nonlinear transform of Gaussian random variable that preserves GaussianityNonlinear transform of two random variables for GaussianityGeometric Random VariableConditional Expectation as a random variable of independent rendom variablesNonlinear transform of two random variables for GaussianityAutocorrelation of Truncated Gaussian Random ProcessConditional PDF on Gaussian random vectorsShowing convergence of a random variable in distribution to a standard normal random variableWhat is the expectation of norm of $[X_1,ldots, X_n]$ where $X_i$ are indpendent complex Gaussian random variablesFirst two moments of $sin(X_1)/sin(X_2)$ where $X_1$ and $X_2$ are independent Gaussian random variablesConditional probability of equality of uniform distributed random variablePartial regression coefficient calculated in two different ways

is the intersection of subgroups a subgroup of each subgroup

Arthur Somervell: 1000 Exercises - Meaning of this notation

What are the differences between the usage of 'it' and 'they'?

To string or not to string

What does it mean to describe someone as a butt steak?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

What's the output of a record cartridge playing an out-of-speed record

Can I make popcorn with any corn?

How old can references or sources in a thesis be?

The use of multiple foreign keys on same column in SQL Server

Test if tikzmark exists on same page

How to test if a transaction is standard without spending real money?

How does one intimidate enemies without having the capacity for violence?

What does "Puller Prush Person" mean?

Is this a crack on the carbon frame?

How can bays and straits be determined in a procedurally generated map?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Minkowski space

Fencing style for blades that can attack from a distance

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Have astronauts in space suits ever taken selfies? If so, how?

What typically incentivizes a professor to change jobs to a lower ranking university?

What do the dots in this tr command do: tr .............A-Z A-ZA-Z <<< "JVPQBOV" (with 13 dots)

Risk of getting Chronic Wasting Disease (CWD) in the United States?



nonlinear transform of Gaussian random variable that preserves Gaussianity


Nonlinear transform of two random variables for GaussianityGeometric Random VariableConditional Expectation as a random variable of independent rendom variablesNonlinear transform of two random variables for GaussianityAutocorrelation of Truncated Gaussian Random ProcessConditional PDF on Gaussian random vectorsShowing convergence of a random variable in distribution to a standard normal random variableWhat is the expectation of norm of $[X_1,ldots, X_n]$ where $X_i$ are indpendent complex Gaussian random variablesFirst two moments of $sin(X_1)/sin(X_2)$ where $X_1$ and $X_2$ are independent Gaussian random variablesConditional probability of equality of uniform distributed random variablePartial regression coefficient calculated in two different ways













3












$begingroup$


I recently know that following results.



suppose that $x_1, x_2, x_3$ are independent real Gaussian random variables with $mathcalN(0, 1)$. Then



$$
fracx_1 + x_2 x_3sqrt1+x_3^2 sim mathcalN(0, 1)
$$



We can prove this result by direct computing. But I am wondering if there is a simpler way. Also, since this result is interesting. I am wondering if there is any generalization



Thanks










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    I recently know that following results.



    suppose that $x_1, x_2, x_3$ are independent real Gaussian random variables with $mathcalN(0, 1)$. Then



    $$
    fracx_1 + x_2 x_3sqrt1+x_3^2 sim mathcalN(0, 1)
    $$



    We can prove this result by direct computing. But I am wondering if there is a simpler way. Also, since this result is interesting. I am wondering if there is any generalization



    Thanks










    share|cite|improve this question









    $endgroup$














      3












      3








      3


      1



      $begingroup$


      I recently know that following results.



      suppose that $x_1, x_2, x_3$ are independent real Gaussian random variables with $mathcalN(0, 1)$. Then



      $$
      fracx_1 + x_2 x_3sqrt1+x_3^2 sim mathcalN(0, 1)
      $$



      We can prove this result by direct computing. But I am wondering if there is a simpler way. Also, since this result is interesting. I am wondering if there is any generalization



      Thanks










      share|cite|improve this question









      $endgroup$




      I recently know that following results.



      suppose that $x_1, x_2, x_3$ are independent real Gaussian random variables with $mathcalN(0, 1)$. Then



      $$
      fracx_1 + x_2 x_3sqrt1+x_3^2 sim mathcalN(0, 1)
      $$



      We can prove this result by direct computing. But I am wondering if there is a simpler way. Also, since this result is interesting. I am wondering if there is any generalization



      Thanks







      random-variables random






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 1 '13 at 18:04









      Yan ZhuYan Zhu

      314210




      314210




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          The point is that the conditional distribution of your random variable given $x_3$ is always $cal N(0,1)$. One generalization is this. Suppose
          $X_1, ldots, X_n$ are independent $cal N(0,1)$ random variables, and $bf Y = (Y_1, ldots, Y_n)$ is a vector-valued random variable independent of $X_1, ldots, X_n$ and supported on the sphere $Y_1^2 + ldots + Y_n^2 = 1$. Then
          $bf X cdot bf Y = X_1 Y_1 + ldots + X_n Y_n sim cal N(0,1)$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Wow...It's simple...I am rusty after three years left school.
            $endgroup$
            – Yan Zhu
            Sep 1 '13 at 22:26






          • 1




            $begingroup$
            Hmm, but the OP has a non-linear combination.
            $endgroup$
            – Walter
            Dec 21 '13 at 13:01






          • 1




            $begingroup$
            @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
            $endgroup$
            – Robert Israel
            Dec 22 '13 at 4:44










          • $begingroup$
            @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
            $endgroup$
            – Walter
            Dec 22 '13 at 15:19










          • $begingroup$
            I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
            $endgroup$
            – Léo Léopold Hertz 준영
            Aug 20 '15 at 21:14



















          0












          $begingroup$

          Following Robert's answer, I would like to clarify that if your RVs, let's say, $z$ and $y$ satisfy



          $P(z|y)$ ~ Normal with fixed parameters



          $P(y)$ ~ Normal with fixed parameters



          then we can condition and marginalize to get $P(z)$



          $$P(z) = int_Y^ P(z|y)P(y) dy$$
          And it can be shown that $P(z)$ follows a Normal distribution with a certain mean and variance.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f481503%2fnonlinear-transform-of-gaussian-random-variable-that-preserves-gaussianity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            The point is that the conditional distribution of your random variable given $x_3$ is always $cal N(0,1)$. One generalization is this. Suppose
            $X_1, ldots, X_n$ are independent $cal N(0,1)$ random variables, and $bf Y = (Y_1, ldots, Y_n)$ is a vector-valued random variable independent of $X_1, ldots, X_n$ and supported on the sphere $Y_1^2 + ldots + Y_n^2 = 1$. Then
            $bf X cdot bf Y = X_1 Y_1 + ldots + X_n Y_n sim cal N(0,1)$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Wow...It's simple...I am rusty after three years left school.
              $endgroup$
              – Yan Zhu
              Sep 1 '13 at 22:26






            • 1




              $begingroup$
              Hmm, but the OP has a non-linear combination.
              $endgroup$
              – Walter
              Dec 21 '13 at 13:01






            • 1




              $begingroup$
              @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
              $endgroup$
              – Robert Israel
              Dec 22 '13 at 4:44










            • $begingroup$
              @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
              $endgroup$
              – Walter
              Dec 22 '13 at 15:19










            • $begingroup$
              I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
              $endgroup$
              – Léo Léopold Hertz 준영
              Aug 20 '15 at 21:14
















            2












            $begingroup$

            The point is that the conditional distribution of your random variable given $x_3$ is always $cal N(0,1)$. One generalization is this. Suppose
            $X_1, ldots, X_n$ are independent $cal N(0,1)$ random variables, and $bf Y = (Y_1, ldots, Y_n)$ is a vector-valued random variable independent of $X_1, ldots, X_n$ and supported on the sphere $Y_1^2 + ldots + Y_n^2 = 1$. Then
            $bf X cdot bf Y = X_1 Y_1 + ldots + X_n Y_n sim cal N(0,1)$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Wow...It's simple...I am rusty after three years left school.
              $endgroup$
              – Yan Zhu
              Sep 1 '13 at 22:26






            • 1




              $begingroup$
              Hmm, but the OP has a non-linear combination.
              $endgroup$
              – Walter
              Dec 21 '13 at 13:01






            • 1




              $begingroup$
              @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
              $endgroup$
              – Robert Israel
              Dec 22 '13 at 4:44










            • $begingroup$
              @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
              $endgroup$
              – Walter
              Dec 22 '13 at 15:19










            • $begingroup$
              I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
              $endgroup$
              – Léo Léopold Hertz 준영
              Aug 20 '15 at 21:14














            2












            2








            2





            $begingroup$

            The point is that the conditional distribution of your random variable given $x_3$ is always $cal N(0,1)$. One generalization is this. Suppose
            $X_1, ldots, X_n$ are independent $cal N(0,1)$ random variables, and $bf Y = (Y_1, ldots, Y_n)$ is a vector-valued random variable independent of $X_1, ldots, X_n$ and supported on the sphere $Y_1^2 + ldots + Y_n^2 = 1$. Then
            $bf X cdot bf Y = X_1 Y_1 + ldots + X_n Y_n sim cal N(0,1)$.






            share|cite|improve this answer









            $endgroup$



            The point is that the conditional distribution of your random variable given $x_3$ is always $cal N(0,1)$. One generalization is this. Suppose
            $X_1, ldots, X_n$ are independent $cal N(0,1)$ random variables, and $bf Y = (Y_1, ldots, Y_n)$ is a vector-valued random variable independent of $X_1, ldots, X_n$ and supported on the sphere $Y_1^2 + ldots + Y_n^2 = 1$. Then
            $bf X cdot bf Y = X_1 Y_1 + ldots + X_n Y_n sim cal N(0,1)$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Sep 1 '13 at 18:35









            Robert IsraelRobert Israel

            330k23219473




            330k23219473











            • $begingroup$
              Wow...It's simple...I am rusty after three years left school.
              $endgroup$
              – Yan Zhu
              Sep 1 '13 at 22:26






            • 1




              $begingroup$
              Hmm, but the OP has a non-linear combination.
              $endgroup$
              – Walter
              Dec 21 '13 at 13:01






            • 1




              $begingroup$
              @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
              $endgroup$
              – Robert Israel
              Dec 22 '13 at 4:44










            • $begingroup$
              @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
              $endgroup$
              – Walter
              Dec 22 '13 at 15:19










            • $begingroup$
              I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
              $endgroup$
              – Léo Léopold Hertz 준영
              Aug 20 '15 at 21:14

















            • $begingroup$
              Wow...It's simple...I am rusty after three years left school.
              $endgroup$
              – Yan Zhu
              Sep 1 '13 at 22:26






            • 1




              $begingroup$
              Hmm, but the OP has a non-linear combination.
              $endgroup$
              – Walter
              Dec 21 '13 at 13:01






            • 1




              $begingroup$
              @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
              $endgroup$
              – Robert Israel
              Dec 22 '13 at 4:44










            • $begingroup$
              @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
              $endgroup$
              – Walter
              Dec 22 '13 at 15:19










            • $begingroup$
              I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
              $endgroup$
              – Léo Léopold Hertz 준영
              Aug 20 '15 at 21:14
















            $begingroup$
            Wow...It's simple...I am rusty after three years left school.
            $endgroup$
            – Yan Zhu
            Sep 1 '13 at 22:26




            $begingroup$
            Wow...It's simple...I am rusty after three years left school.
            $endgroup$
            – Yan Zhu
            Sep 1 '13 at 22:26




            1




            1




            $begingroup$
            Hmm, but the OP has a non-linear combination.
            $endgroup$
            – Walter
            Dec 21 '13 at 13:01




            $begingroup$
            Hmm, but the OP has a non-linear combination.
            $endgroup$
            – Walter
            Dec 21 '13 at 13:01




            1




            1




            $begingroup$
            @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
            $endgroup$
            – Robert Israel
            Dec 22 '13 at 4:44




            $begingroup$
            @walter: What's your point? Given $x_3$, it is a linear combination of $x_1$ and $x_2$. And if the conditional distribution given $x_3$ is the same for all values of $x_3$, then that conditional distribution is the (unconditional) distribution.
            $endgroup$
            – Robert Israel
            Dec 22 '13 at 4:44












            $begingroup$
            @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
            $endgroup$
            – Walter
            Dec 22 '13 at 15:19




            $begingroup$
            @RobertIsrael I missed that your $boldsymbolY$ was a random variable.
            $endgroup$
            – Walter
            Dec 22 '13 at 15:19












            $begingroup$
            I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
            $endgroup$
            – Léo Léopold Hertz 준영
            Aug 20 '15 at 21:14





            $begingroup$
            I extended this answer here math.stackexchange.com/q/1404329/17474 when there is no linear relationship between $x_1$ and $x_2$.
            $endgroup$
            – Léo Léopold Hertz 준영
            Aug 20 '15 at 21:14












            0












            $begingroup$

            Following Robert's answer, I would like to clarify that if your RVs, let's say, $z$ and $y$ satisfy



            $P(z|y)$ ~ Normal with fixed parameters



            $P(y)$ ~ Normal with fixed parameters



            then we can condition and marginalize to get $P(z)$



            $$P(z) = int_Y^ P(z|y)P(y) dy$$
            And it can be shown that $P(z)$ follows a Normal distribution with a certain mean and variance.






            share|cite|improve this answer











            $endgroup$

















              0












              $begingroup$

              Following Robert's answer, I would like to clarify that if your RVs, let's say, $z$ and $y$ satisfy



              $P(z|y)$ ~ Normal with fixed parameters



              $P(y)$ ~ Normal with fixed parameters



              then we can condition and marginalize to get $P(z)$



              $$P(z) = int_Y^ P(z|y)P(y) dy$$
              And it can be shown that $P(z)$ follows a Normal distribution with a certain mean and variance.






              share|cite|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                Following Robert's answer, I would like to clarify that if your RVs, let's say, $z$ and $y$ satisfy



                $P(z|y)$ ~ Normal with fixed parameters



                $P(y)$ ~ Normal with fixed parameters



                then we can condition and marginalize to get $P(z)$



                $$P(z) = int_Y^ P(z|y)P(y) dy$$
                And it can be shown that $P(z)$ follows a Normal distribution with a certain mean and variance.






                share|cite|improve this answer











                $endgroup$



                Following Robert's answer, I would like to clarify that if your RVs, let's say, $z$ and $y$ satisfy



                $P(z|y)$ ~ Normal with fixed parameters



                $P(y)$ ~ Normal with fixed parameters



                then we can condition and marginalize to get $P(z)$



                $$P(z) = int_Y^ P(z|y)P(y) dy$$
                And it can be shown that $P(z)$ follows a Normal distribution with a certain mean and variance.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 29 at 17:31









                Daniele Tampieri

                2,66221022




                2,66221022










                answered Mar 29 at 15:57









                Mariano BurichMariano Burich

                213




                213



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f481503%2fnonlinear-transform-of-gaussian-random-variable-that-preserves-gaussianity%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu