Skip to main content

Autobiografy Navigaasjemenu

Multi tool use
Multi tool use

AutobiografyLiterêr sjenre


GrykskesjenreAldheidapologyFiksjewurkendeiboekmemoiresNederlân












Autobiografy




Ut Wikipedy

(Trochwiisd fan Memoires)





Jump to navigation
Jump to search




Earste druk fan de autobiografy Aus meinem Leben. Dichtung und Wahrheit fan Johann Wolfgang von Goethe


In autobiografy (fan it Grykske αὐτός, autos, "self"; βίος, bios, "libben"; en γράφειν, graphein, "skriuwe") is in literêr sjenre yn 'e foarm fan in eigenskreaun ferslach fan jins libben. Yn 'e Aldheid waard sa'n tekst in apology, oftewol "ûntskuldiging" neamd, mei't it doedestiden altiten mear wei hie fan in selsrjochtfeardiging as fan in selsdokumintêre. Fiksjewurken befetsje gauris autobiografyske eleminten, ek al makket dat se uteraard noch net ta autobiografyen.


Twa sjenres dy't nau besibbe binne oan 'e autobiografy binne it deiboek en de memoires. It deiboek ferskilt fan 'e autobiografy trochdat it gjin trochrinnend ferhaal is, mar in losse deistige opsomming fan barrens. En memoires hawwe in smeller eachweid as in autobiografy: wylst in autobiografy it libben en de wrâld fan in persoan beskriuwt, rjochtsje memoires harren yn 'e regel inkeld op in beskate perioade út en in beskaat diel fan in libben. Sa soe de hear X, as dy bgl. minister-presidint fan Nederlân west hie, yn in autobiografy syn hiele libben fan syn berte ôf behannelje, wylst er yn syn memoires nei alle gedachten inkeld syn amtsperioade beskriuwe soe, en dan noch allinnich ynsafier't dy yn ferbân stie mei syn minister-presidintskip, dus sûnder (djip) yn te gean op syn priveelibben.









Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Autobiografy&oldid=898081"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.028","walltime":"0.029","ppvisitednodes":"value":1,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":0,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":1,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 0.000 1 -total"],"cachereport":"origin":"mw1296","timestamp":"20190314145931","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":111,"wgHostname":"mw1253"););5HkD,1KE5m9fKQd,1i ZA,WZ2OLcH0UeLeY2J8m5zJQZ 3mviUXNSBGfdcVZvvgPicM
Ck3vEBz6SaQ8LgKyZPyr,XTHP,d4sPLz,c Z7WmlDXLCmh,Xp6tCMvg0hCEQKcwYDQBopL

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?