What type of PDE's can one solve using Fourier Transforms? The Next CEO of Stack OverflowUsing games to approximate solutions to PDE'sHeat equation, separation of variables and Fourier transformPartial differential equation (heat equation with other terms)?Rewriting the heat diffusion equation with temperature dependent diffusion coefficient to include joule heating.Good recommendations for solving PDE's by integral transformsFourier transform - next stepSolving Laplace Equation with Fourier IntegralSolving the Heat Equation using the Fourier TransformMotivation on Using Fourier Series to Solve Heat EquationSolving an integral equation (possibly Fredholm, 1st kind) containing quartic exponentials with Fourier Transforms
If the heap is initialized for security, then why is the stack uninitialized?
Should I tutor a student who I know has cheated on their homework?
What is meant by a M next to a roman numeral?
Science fiction (dystopian) short story set after WWIII
How to get regions to plot as graphics
Can the Reverse Gravity spell affect the Meteor Swarm spell?
I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin
Rotate a column
How do I get the green key off the shelf in the Dobby level of Lego Harry Potter 2?
How can I quit an app using Terminal?
Is HostGator storing my password in plaintext?
How to Reset Passwords on Multiple Websites Easily?
% symbol leads to superlong (forever?) compilations
Can I equip Skullclamp on a creature I am sacrificing?
Fastest way to shutdown Ubuntu Mate 18.10
What can we do to stop prior company from asking us questions?
Text adventure game code
Where to find order of arguments for default functions
How can I get through very long and very dry, but also very useful technical documents when learning a new tool?
What is the purpose of the Evocation wizard's Potent Cantrip feature?
Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?
How to count occurrences of text in a file?
How do I go from 300 unfinished/half written blog posts, to published posts?
How to safely derail a train during transit?
What type of PDE's can one solve using Fourier Transforms?
The Next CEO of Stack OverflowUsing games to approximate solutions to PDE'sHeat equation, separation of variables and Fourier transformPartial differential equation (heat equation with other terms)?Rewriting the heat diffusion equation with temperature dependent diffusion coefficient to include joule heating.Good recommendations for solving PDE's by integral transformsFourier transform - next stepSolving Laplace Equation with Fourier IntegralSolving the Heat Equation using the Fourier TransformMotivation on Using Fourier Series to Solve Heat EquationSolving an integral equation (possibly Fredholm, 1st kind) containing quartic exponentials with Fourier Transforms
$begingroup$
The question is really in the title. I have been seeing many examples of PDE's (heat equation on an infinite domain for example) being solved using Fourier transforms (FT). However, I have been unable to find a theory that says which type of PDE's can be solved by FT. So, my questions would be:
- What does mathematical theory say regarding the type of PDE's that can be solved by FT?
- Is the following PDE solvable by FT : $c cdot varphi_EE + f(E) cdot varphi_E + g(E) cdot varphi + varphi_x = 0 $, where $varphi = varphi(E,x)$, $E in (-infty,+infty)$, $ x in (0,infty)$, $varphi_EE=fracpartial^2varphipartial E^2$ and $varphi_x=fracpartialvarphipartial x$ and $c = constant$
- If the above equation is not solvable by Fourier Transforms, what other methods (aside from numerical solutions) are applicable?
Thank you in advance
pde fourier-transform
New contributor
$endgroup$
add a comment |
$begingroup$
The question is really in the title. I have been seeing many examples of PDE's (heat equation on an infinite domain for example) being solved using Fourier transforms (FT). However, I have been unable to find a theory that says which type of PDE's can be solved by FT. So, my questions would be:
- What does mathematical theory say regarding the type of PDE's that can be solved by FT?
- Is the following PDE solvable by FT : $c cdot varphi_EE + f(E) cdot varphi_E + g(E) cdot varphi + varphi_x = 0 $, where $varphi = varphi(E,x)$, $E in (-infty,+infty)$, $ x in (0,infty)$, $varphi_EE=fracpartial^2varphipartial E^2$ and $varphi_x=fracpartialvarphipartial x$ and $c = constant$
- If the above equation is not solvable by Fourier Transforms, what other methods (aside from numerical solutions) are applicable?
Thank you in advance
pde fourier-transform
New contributor
$endgroup$
$begingroup$
Generally speaking you will run into troubles if you perform the fourier-transform with respect to the $E$ variable since the functions $f$ and $g$ depend on $E$ (this will lead to convolutions of your unknown function). If I were you I would try a laplace transform in $x$ and solve the resulting ODE, then transform back.
$endgroup$
– maxmilgram
yesterday
$begingroup$
For the 2. part: what type of BC do you impose at $x=0$?
$endgroup$
– maxmilgram
15 hours ago
$begingroup$
I would impose $varphi(E,0) = f(E) = delta(E)$. However, other conditions might also work. For example $varphi(E,0) = const$.
$endgroup$
– Tiberiu
15 hours ago
$begingroup$
Wait, so you have specific choices for the functions (or rather distributions) $f$and $g$?
$endgroup$
– maxmilgram
12 hours ago
$begingroup$
Yes. $f(E) = aE^k $ and $g(E) = fracdfdE = akE^k-1$. I realize now that in my previous reply I identified the condition $varphi(E,0)=f(E)$. This $f(E)$ is not the same as the one from the differential equation
$endgroup$
– Tiberiu
10 hours ago
add a comment |
$begingroup$
The question is really in the title. I have been seeing many examples of PDE's (heat equation on an infinite domain for example) being solved using Fourier transforms (FT). However, I have been unable to find a theory that says which type of PDE's can be solved by FT. So, my questions would be:
- What does mathematical theory say regarding the type of PDE's that can be solved by FT?
- Is the following PDE solvable by FT : $c cdot varphi_EE + f(E) cdot varphi_E + g(E) cdot varphi + varphi_x = 0 $, where $varphi = varphi(E,x)$, $E in (-infty,+infty)$, $ x in (0,infty)$, $varphi_EE=fracpartial^2varphipartial E^2$ and $varphi_x=fracpartialvarphipartial x$ and $c = constant$
- If the above equation is not solvable by Fourier Transforms, what other methods (aside from numerical solutions) are applicable?
Thank you in advance
pde fourier-transform
New contributor
$endgroup$
The question is really in the title. I have been seeing many examples of PDE's (heat equation on an infinite domain for example) being solved using Fourier transforms (FT). However, I have been unable to find a theory that says which type of PDE's can be solved by FT. So, my questions would be:
- What does mathematical theory say regarding the type of PDE's that can be solved by FT?
- Is the following PDE solvable by FT : $c cdot varphi_EE + f(E) cdot varphi_E + g(E) cdot varphi + varphi_x = 0 $, where $varphi = varphi(E,x)$, $E in (-infty,+infty)$, $ x in (0,infty)$, $varphi_EE=fracpartial^2varphipartial E^2$ and $varphi_x=fracpartialvarphipartial x$ and $c = constant$
- If the above equation is not solvable by Fourier Transforms, what other methods (aside from numerical solutions) are applicable?
Thank you in advance
pde fourier-transform
pde fourier-transform
New contributor
New contributor
New contributor
asked yesterday
TiberiuTiberiu
161
161
New contributor
New contributor
$begingroup$
Generally speaking you will run into troubles if you perform the fourier-transform with respect to the $E$ variable since the functions $f$ and $g$ depend on $E$ (this will lead to convolutions of your unknown function). If I were you I would try a laplace transform in $x$ and solve the resulting ODE, then transform back.
$endgroup$
– maxmilgram
yesterday
$begingroup$
For the 2. part: what type of BC do you impose at $x=0$?
$endgroup$
– maxmilgram
15 hours ago
$begingroup$
I would impose $varphi(E,0) = f(E) = delta(E)$. However, other conditions might also work. For example $varphi(E,0) = const$.
$endgroup$
– Tiberiu
15 hours ago
$begingroup$
Wait, so you have specific choices for the functions (or rather distributions) $f$and $g$?
$endgroup$
– maxmilgram
12 hours ago
$begingroup$
Yes. $f(E) = aE^k $ and $g(E) = fracdfdE = akE^k-1$. I realize now that in my previous reply I identified the condition $varphi(E,0)=f(E)$. This $f(E)$ is not the same as the one from the differential equation
$endgroup$
– Tiberiu
10 hours ago
add a comment |
$begingroup$
Generally speaking you will run into troubles if you perform the fourier-transform with respect to the $E$ variable since the functions $f$ and $g$ depend on $E$ (this will lead to convolutions of your unknown function). If I were you I would try a laplace transform in $x$ and solve the resulting ODE, then transform back.
$endgroup$
– maxmilgram
yesterday
$begingroup$
For the 2. part: what type of BC do you impose at $x=0$?
$endgroup$
– maxmilgram
15 hours ago
$begingroup$
I would impose $varphi(E,0) = f(E) = delta(E)$. However, other conditions might also work. For example $varphi(E,0) = const$.
$endgroup$
– Tiberiu
15 hours ago
$begingroup$
Wait, so you have specific choices for the functions (or rather distributions) $f$and $g$?
$endgroup$
– maxmilgram
12 hours ago
$begingroup$
Yes. $f(E) = aE^k $ and $g(E) = fracdfdE = akE^k-1$. I realize now that in my previous reply I identified the condition $varphi(E,0)=f(E)$. This $f(E)$ is not the same as the one from the differential equation
$endgroup$
– Tiberiu
10 hours ago
$begingroup$
Generally speaking you will run into troubles if you perform the fourier-transform with respect to the $E$ variable since the functions $f$ and $g$ depend on $E$ (this will lead to convolutions of your unknown function). If I were you I would try a laplace transform in $x$ and solve the resulting ODE, then transform back.
$endgroup$
– maxmilgram
yesterday
$begingroup$
Generally speaking you will run into troubles if you perform the fourier-transform with respect to the $E$ variable since the functions $f$ and $g$ depend on $E$ (this will lead to convolutions of your unknown function). If I were you I would try a laplace transform in $x$ and solve the resulting ODE, then transform back.
$endgroup$
– maxmilgram
yesterday
$begingroup$
For the 2. part: what type of BC do you impose at $x=0$?
$endgroup$
– maxmilgram
15 hours ago
$begingroup$
For the 2. part: what type of BC do you impose at $x=0$?
$endgroup$
– maxmilgram
15 hours ago
$begingroup$
I would impose $varphi(E,0) = f(E) = delta(E)$. However, other conditions might also work. For example $varphi(E,0) = const$.
$endgroup$
– Tiberiu
15 hours ago
$begingroup$
I would impose $varphi(E,0) = f(E) = delta(E)$. However, other conditions might also work. For example $varphi(E,0) = const$.
$endgroup$
– Tiberiu
15 hours ago
$begingroup$
Wait, so you have specific choices for the functions (or rather distributions) $f$and $g$?
$endgroup$
– maxmilgram
12 hours ago
$begingroup$
Wait, so you have specific choices for the functions (or rather distributions) $f$and $g$?
$endgroup$
– maxmilgram
12 hours ago
$begingroup$
Yes. $f(E) = aE^k $ and $g(E) = fracdfdE = akE^k-1$. I realize now that in my previous reply I identified the condition $varphi(E,0)=f(E)$. This $f(E)$ is not the same as the one from the differential equation
$endgroup$
– Tiberiu
10 hours ago
$begingroup$
Yes. $f(E) = aE^k $ and $g(E) = fracdfdE = akE^k-1$. I realize now that in my previous reply I identified the condition $varphi(E,0)=f(E)$. This $f(E)$ is not the same as the one from the differential equation
$endgroup$
– Tiberiu
10 hours ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Tiberiu is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164372%2fwhat-type-of-pdes-can-one-solve-using-fourier-transforms%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Tiberiu is a new contributor. Be nice, and check out our Code of Conduct.
Tiberiu is a new contributor. Be nice, and check out our Code of Conduct.
Tiberiu is a new contributor. Be nice, and check out our Code of Conduct.
Tiberiu is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164372%2fwhat-type-of-pdes-can-one-solve-using-fourier-transforms%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Generally speaking you will run into troubles if you perform the fourier-transform with respect to the $E$ variable since the functions $f$ and $g$ depend on $E$ (this will lead to convolutions of your unknown function). If I were you I would try a laplace transform in $x$ and solve the resulting ODE, then transform back.
$endgroup$
– maxmilgram
yesterday
$begingroup$
For the 2. part: what type of BC do you impose at $x=0$?
$endgroup$
– maxmilgram
15 hours ago
$begingroup$
I would impose $varphi(E,0) = f(E) = delta(E)$. However, other conditions might also work. For example $varphi(E,0) = const$.
$endgroup$
– Tiberiu
15 hours ago
$begingroup$
Wait, so you have specific choices for the functions (or rather distributions) $f$and $g$?
$endgroup$
– maxmilgram
12 hours ago
$begingroup$
Yes. $f(E) = aE^k $ and $g(E) = fracdfdE = akE^k-1$. I realize now that in my previous reply I identified the condition $varphi(E,0)=f(E)$. This $f(E)$ is not the same as the one from the differential equation
$endgroup$
– Tiberiu
10 hours ago