Calculating probability of 2 people reaching together The Next CEO of Stack OverflowExact Probability of Collision of Two Independent Random Walkers After N StepsExact Probability of Collision of Two Independent Random Walkers After N StepsIndependent, Uniform, Random Variable:The probability of a drunk person/random walkProbability 2 Random Walkers Will Meet (1D)Result of a $2D$ random walk with position dependent probabilities of stepResult of a $2D$ random walk with position dependent probabilitiesProbability - A drunk man walking along the axisProbability of reaching a pathcalculating probability of drunk man walking on a lineDrunken man walking on an axis

How do I get the green key off the shelf in the Dobby level of Lego Harry Potter 2?

How to safely derail a train during transit?

Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables

What is the purpose of the Evocation wizard's Potent Cantrip feature?

Is HostGator storing my password in plaintext?

Why is there a PLL in CPU?

Why here is plural "We went to the movies last night."

Science fiction (dystopian) short story set after WWIII

How to write the block matrix in LaTex?

Was a professor correct to chastise me for writing "Prof. X" rather than "Professor X"?

Where to find order of arguments for default functions

How to write papers efficiently when English isn't my first language?

How can I get through very long and very dry, but also very useful technical documents when learning a new tool?

Can the Reverse Gravity spell affect the Meteor Swarm spell?

Unreliable Magic - Is it worth it?

Need some help with wall behind rangetop

Is a stroke of luck acceptable after a series of unfavorable events?

How do scammers retract money, while you can’t?

How to use tikz in fbox?

Can a single photon have an energy density?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Why did we only see the N-1 starfighters in one film?

What can we do to stop prior company from asking us questions?

Too much space between section and text in a twocolumn document



Calculating probability of 2 people reaching together



The Next CEO of Stack OverflowExact Probability of Collision of Two Independent Random Walkers After N StepsExact Probability of Collision of Two Independent Random Walkers After N StepsIndependent, Uniform, Random Variable:The probability of a drunk person/random walkProbability 2 Random Walkers Will Meet (1D)Result of a $2D$ random walk with position dependent probabilities of stepResult of a $2D$ random walk with position dependent probabilitiesProbability - A drunk man walking along the axisProbability of reaching a pathcalculating probability of drunk man walking on a lineDrunken man walking on an axis










-3












$begingroup$


How do I solve given problem? Or how do I approach this question?




Two drunks start out together at the origin, each having equal probability of making a step to the left or right along the $x$ axis. Find the probability that they meet again after $N$ steps. It is understood that the men make their steps simultaneously. (It may be helpful to consider their relative motion.)











share|cite|improve this question











$endgroup$











  • $begingroup$
    Possible duplicate of Exact Probability of Collision of Two Independent Random Walkers After N Steps
    $endgroup$
    – Yanior Weg
    yesterday















-3












$begingroup$


How do I solve given problem? Or how do I approach this question?




Two drunks start out together at the origin, each having equal probability of making a step to the left or right along the $x$ axis. Find the probability that they meet again after $N$ steps. It is understood that the men make their steps simultaneously. (It may be helpful to consider their relative motion.)











share|cite|improve this question











$endgroup$











  • $begingroup$
    Possible duplicate of Exact Probability of Collision of Two Independent Random Walkers After N Steps
    $endgroup$
    – Yanior Weg
    yesterday













-3












-3








-3


1



$begingroup$


How do I solve given problem? Or how do I approach this question?




Two drunks start out together at the origin, each having equal probability of making a step to the left or right along the $x$ axis. Find the probability that they meet again after $N$ steps. It is understood that the men make their steps simultaneously. (It may be helpful to consider their relative motion.)











share|cite|improve this question











$endgroup$




How do I solve given problem? Or how do I approach this question?




Two drunks start out together at the origin, each having equal probability of making a step to the left or right along the $x$ axis. Find the probability that they meet again after $N$ steps. It is understood that the men make their steps simultaneously. (It may be helpful to consider their relative motion.)








probability probability-theory probability-distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Matti P.

2,2811514




2,2811514










asked Mar 26 at 4:31









Abhi7731756Abhi7731756

74




74











  • $begingroup$
    Possible duplicate of Exact Probability of Collision of Two Independent Random Walkers After N Steps
    $endgroup$
    – Yanior Weg
    yesterday
















  • $begingroup$
    Possible duplicate of Exact Probability of Collision of Two Independent Random Walkers After N Steps
    $endgroup$
    – Yanior Weg
    yesterday















$begingroup$
Possible duplicate of Exact Probability of Collision of Two Independent Random Walkers After N Steps
$endgroup$
– Yanior Weg
yesterday




$begingroup$
Possible duplicate of Exact Probability of Collision of Two Independent Random Walkers After N Steps
$endgroup$
– Yanior Weg
yesterday










1 Answer
1






active

oldest

votes


















0












$begingroup$

Suppose $X_n$ is the coordinate of the first man after $n$ steps, and $Y$ - of the second one. Suppose $Z_n = X_n - Y_n$. Then your problem is equivalent to finding $P(Z_N = 0)$.
We see, that $$Z_n - Z_n-1 = begincases 2 & quad text with probability frac14 text (the probability that the first one makes a step right and the other a step left) \ 0 & quad text with probability frac12 text (the probability that they move in the same direction) \ -2 & quad text with probability frac14 text (the probability that the first one makes a step left and the other a step right) endcases$$



And each step is assumed to be made independently.



Suppose $N_1$ is the number of the occurrences of the first case, $N_2$ - of the second case, and $N_3$ - of the third case. Then, in case $Z_N = 0$ we have $N = N_1 + N_2 + N_3$ and $N_1 = N_3$. There are $C_N^N_2C_N - N_2^fracN - N_22$ such configurations for any fixed $N_2$, such that $N equiv N_2 (textmod 2)$ (and $0$ otherwise). And the probability of each of them is $frac12^N_2frac14^N - N_2 = frac12^2N - N_2$. Thus, we have $$P(Z_N = 0) = begincases fracSigma_i = 0^fracN2 C_N^2iC_N - 2i^fracN2 - i4^N - i & quad N text is even \ fracSigma_i = 0^fracN-12 C_N^2i+1C_N - 2i-1^fracN-12 - i2^2N - 2i - 1 & quad N text is oddendcases$$



That is your answer.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
    $endgroup$
    – Abhi7731756
    yesterday











  • $begingroup$
    @Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
    $endgroup$
    – Yanior Weg
    yesterday











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162716%2fcalculating-probability-of-2-people-reaching-together%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Suppose $X_n$ is the coordinate of the first man after $n$ steps, and $Y$ - of the second one. Suppose $Z_n = X_n - Y_n$. Then your problem is equivalent to finding $P(Z_N = 0)$.
We see, that $$Z_n - Z_n-1 = begincases 2 & quad text with probability frac14 text (the probability that the first one makes a step right and the other a step left) \ 0 & quad text with probability frac12 text (the probability that they move in the same direction) \ -2 & quad text with probability frac14 text (the probability that the first one makes a step left and the other a step right) endcases$$



And each step is assumed to be made independently.



Suppose $N_1$ is the number of the occurrences of the first case, $N_2$ - of the second case, and $N_3$ - of the third case. Then, in case $Z_N = 0$ we have $N = N_1 + N_2 + N_3$ and $N_1 = N_3$. There are $C_N^N_2C_N - N_2^fracN - N_22$ such configurations for any fixed $N_2$, such that $N equiv N_2 (textmod 2)$ (and $0$ otherwise). And the probability of each of them is $frac12^N_2frac14^N - N_2 = frac12^2N - N_2$. Thus, we have $$P(Z_N = 0) = begincases fracSigma_i = 0^fracN2 C_N^2iC_N - 2i^fracN2 - i4^N - i & quad N text is even \ fracSigma_i = 0^fracN-12 C_N^2i+1C_N - 2i-1^fracN-12 - i2^2N - 2i - 1 & quad N text is oddendcases$$



That is your answer.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
    $endgroup$
    – Abhi7731756
    yesterday











  • $begingroup$
    @Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
    $endgroup$
    – Yanior Weg
    yesterday















0












$begingroup$

Suppose $X_n$ is the coordinate of the first man after $n$ steps, and $Y$ - of the second one. Suppose $Z_n = X_n - Y_n$. Then your problem is equivalent to finding $P(Z_N = 0)$.
We see, that $$Z_n - Z_n-1 = begincases 2 & quad text with probability frac14 text (the probability that the first one makes a step right and the other a step left) \ 0 & quad text with probability frac12 text (the probability that they move in the same direction) \ -2 & quad text with probability frac14 text (the probability that the first one makes a step left and the other a step right) endcases$$



And each step is assumed to be made independently.



Suppose $N_1$ is the number of the occurrences of the first case, $N_2$ - of the second case, and $N_3$ - of the third case. Then, in case $Z_N = 0$ we have $N = N_1 + N_2 + N_3$ and $N_1 = N_3$. There are $C_N^N_2C_N - N_2^fracN - N_22$ such configurations for any fixed $N_2$, such that $N equiv N_2 (textmod 2)$ (and $0$ otherwise). And the probability of each of them is $frac12^N_2frac14^N - N_2 = frac12^2N - N_2$. Thus, we have $$P(Z_N = 0) = begincases fracSigma_i = 0^fracN2 C_N^2iC_N - 2i^fracN2 - i4^N - i & quad N text is even \ fracSigma_i = 0^fracN-12 C_N^2i+1C_N - 2i-1^fracN-12 - i2^2N - 2i - 1 & quad N text is oddendcases$$



That is your answer.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
    $endgroup$
    – Abhi7731756
    yesterday











  • $begingroup$
    @Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
    $endgroup$
    – Yanior Weg
    yesterday













0












0








0





$begingroup$

Suppose $X_n$ is the coordinate of the first man after $n$ steps, and $Y$ - of the second one. Suppose $Z_n = X_n - Y_n$. Then your problem is equivalent to finding $P(Z_N = 0)$.
We see, that $$Z_n - Z_n-1 = begincases 2 & quad text with probability frac14 text (the probability that the first one makes a step right and the other a step left) \ 0 & quad text with probability frac12 text (the probability that they move in the same direction) \ -2 & quad text with probability frac14 text (the probability that the first one makes a step left and the other a step right) endcases$$



And each step is assumed to be made independently.



Suppose $N_1$ is the number of the occurrences of the first case, $N_2$ - of the second case, and $N_3$ - of the third case. Then, in case $Z_N = 0$ we have $N = N_1 + N_2 + N_3$ and $N_1 = N_3$. There are $C_N^N_2C_N - N_2^fracN - N_22$ such configurations for any fixed $N_2$, such that $N equiv N_2 (textmod 2)$ (and $0$ otherwise). And the probability of each of them is $frac12^N_2frac14^N - N_2 = frac12^2N - N_2$. Thus, we have $$P(Z_N = 0) = begincases fracSigma_i = 0^fracN2 C_N^2iC_N - 2i^fracN2 - i4^N - i & quad N text is even \ fracSigma_i = 0^fracN-12 C_N^2i+1C_N - 2i-1^fracN-12 - i2^2N - 2i - 1 & quad N text is oddendcases$$



That is your answer.






share|cite|improve this answer











$endgroup$



Suppose $X_n$ is the coordinate of the first man after $n$ steps, and $Y$ - of the second one. Suppose $Z_n = X_n - Y_n$. Then your problem is equivalent to finding $P(Z_N = 0)$.
We see, that $$Z_n - Z_n-1 = begincases 2 & quad text with probability frac14 text (the probability that the first one makes a step right and the other a step left) \ 0 & quad text with probability frac12 text (the probability that they move in the same direction) \ -2 & quad text with probability frac14 text (the probability that the first one makes a step left and the other a step right) endcases$$



And each step is assumed to be made independently.



Suppose $N_1$ is the number of the occurrences of the first case, $N_2$ - of the second case, and $N_3$ - of the third case. Then, in case $Z_N = 0$ we have $N = N_1 + N_2 + N_3$ and $N_1 = N_3$. There are $C_N^N_2C_N - N_2^fracN - N_22$ such configurations for any fixed $N_2$, such that $N equiv N_2 (textmod 2)$ (and $0$ otherwise). And the probability of each of them is $frac12^N_2frac14^N - N_2 = frac12^2N - N_2$. Thus, we have $$P(Z_N = 0) = begincases fracSigma_i = 0^fracN2 C_N^2iC_N - 2i^fracN2 - i4^N - i & quad N text is even \ fracSigma_i = 0^fracN-12 C_N^2i+1C_N - 2i-1^fracN-12 - i2^2N - 2i - 1 & quad N text is oddendcases$$



That is your answer.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered 2 days ago









Yanior WegYanior Weg

2,78211346




2,78211346











  • $begingroup$
    Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
    $endgroup$
    – Abhi7731756
    yesterday











  • $begingroup$
    @Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
    $endgroup$
    – Yanior Weg
    yesterday
















  • $begingroup$
    Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
    $endgroup$
    – Abhi7731756
    yesterday











  • $begingroup$
    @Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
    $endgroup$
    – Yanior Weg
    yesterday















$begingroup$
Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
$endgroup$
– Abhi7731756
yesterday





$begingroup$
Shouldn't $N_1=N_3 as oppose to N_1=N_2$?
$endgroup$
– Abhi7731756
yesterday













$begingroup$
@Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
$endgroup$
– Yanior Weg
yesterday




$begingroup$
@Abhi7731756, yes, it should. $N_1 = N_2$ was a typo.
$endgroup$
– Yanior Weg
yesterday

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162716%2fcalculating-probability-of-2-people-reaching-together%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε