Prove $sum_kmid nmu(k)d(k)=(-1)^omega(n)$ The Next CEO of Stack OverflowShowing $sum_dmid n mu(d)tau(n/d)=1$ and $sum_dmid n mu(d)tau(d)=(-1)^r$Möbius function verificationProve $sum_k = 1^n mu(k)left[ frac nk right] = 1$Convolution identity involving the Möbius function $sum_n,d>0 |mu(d)| = 2^omega(n)$Prove that $sum_t vert n d^3(t) = (sum_t vert nd(t))^2$ for all $n in mathbbN$Proof of inequality involving multiplicative function?Bound for the sum of the divisors of a numberProve that $sum_n, d geq 1 = 2^omega(n)$Formula for unique distribution of colored balls into boxesUpper bound for the divisor counting function?How to invert an arithmetic function where Möbius inversion may not apply?
Fastest way to shutdown Ubuntu Mate 18.10
I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin
How do I go from 300 unfinished/half written blog posts, to published posts?
What makes a siege story/plot interesting?
What is the difference between "behavior" and "behaviour"?
When airplanes disconnect from a tanker during air to air refueling, why do they bank so sharply to the right?
How did people program for Consoles with multiple CPUs?
What is the purpose of the Evocation wizard's Potent Cantrip feature?
Text adventure game code
Why were Madagascar and New Zealand discovered so late?
How to Reset Passwords on Multiple Websites Easily?
What's the point of interval inversion?
What do "high sea" and "carry" mean in this sentence?
Whats the best way to handle refactoring a big file?
Robert Sheckley short story about vacation spots being overwhelmed
If I blow insulation everywhere in my attic except the door trap, will heat escape through it?
How should I support this large drywall patch?
Is it okay to store user locations?
Are there languages with no euphemisms?
MAZDA 3 2006 (UK) - poor acceleration then takes off at 3250 revs
Inappropriate reference requests from Journal reviewers
How long to clear the 'suck zone' of a turbofan after start is initiated?
Science fiction (dystopian) short story set after WWIII
How do I construct this japanese bowl?
Prove $sum_kmid nmu(k)d(k)=(-1)^omega(n)$
The Next CEO of Stack OverflowShowing $sum_dmid n mu(d)tau(n/d)=1$ and $sum_dmid n mu(d)tau(d)=(-1)^r$Möbius function verificationProve $sum_k = 1^n mu(k)left[ frac nk right] = 1$Convolution identity involving the Möbius function $sum_n,d>0 |mu(d)| = 2^omega(n)$Prove that $sum_t vert n d^3(t) = (sum_t vert nd(t))^2$ for all $n in mathbbN$Proof of inequality involving multiplicative function?Bound for the sum of the divisors of a numberProve that $sum_n, d geq 1 = 2^omega(n)$Formula for unique distribution of colored balls into boxesUpper bound for the divisor counting function?How to invert an arithmetic function where Möbius inversion may not apply?
$begingroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_dmu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
$endgroup$
add a comment |
$begingroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_dmu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
$endgroup$
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
add a comment |
$begingroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_dmu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
$endgroup$
I have the following exercise.
Show that for all natural numbers $n$, the following equality holds
$$sum_dmu(d)d(d)=(-1)^omega(n)$$
Here, $mu$ is the Möbius function, $d$ counts the number of divisors of $n$, and $omega$ counts the number of distinct prime divisors of $n$.
I tried looking at a number like $n=10$ just to see what it looks like expanded. So since the divisors of $n$ are $1,2,5,$ and $10$, I can show that
$$sum_10mu(d)d(d)=(-1)^omega(10)=mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(10)d(10)=1$$
This gives me
$$1cdot 1+-1cdot 2+-1cdot 2 +1cdot 4 $$
I'm thinking somehow since both $mu$ and $d$ are multiplicative that we can rewrite though as
$$mu(1)d(1)+mu(2)d(2)+mu(5)d(5)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)+mu(2)d(2)mu(5)d(5)$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(1+mu(5)d(5))$$
$$=mu(1)d(1)+mu(5)d(5)+mu(2)d(2)(mu(1)d(1)+mu(5)d(5))$$
$$=(1+mu(2)d(2))(1+mu(5)d(5))$$
$$=sum_dmu(d)d(d)sum_dmu(d)d(d)$$
So this original summation function is multiplicative. But this isn't helping me see the how to move forward. I know that the $mu$ function is defined as $mu(n)=(-1)^omega(n)$ if $n$ is square free and $0$ if divisible by a square, so I think this plays a role somehow, but again, I'm feeling lost.
EDIT: Would looking at $n=prod_i=1^kp_i^alpha_i$ be a more useful approach to the problem? Knowing the larger summed function is multiplicative means I can focus my approach on the $p_i^alpha_i$...
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
number-theory multiplicative-function divisor-counting-function mobius-inversion dirichlet-convolution
edited yesterday
Eric Wofsey
191k14216349
191k14216349
asked Jul 19 '14 at 18:19
LalaloopsyLalaloopsy
89111221
89111221
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
add a comment |
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f871933%2fprove-sum-k-mid-n-mukdk-1-omegan%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
$endgroup$
Look at the sum for a prime power $p^k$. The divisors of $p^k$ are $1,p,p^2,...,p^k-1$. All of them contain a square except $1$ and $p$. That means $mu(p^a)=0$. So the sum is
$$mu(1)d(1)+mu(p)d(p)\=1times 1+(-1)times 2=1-2=-1$$
So each different prime, or its power, contributes a factor (-1).
answered Jul 19 '14 at 18:26
Empy2Empy2
33.6k12462
33.6k12462
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
1
1
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
$begingroup$
In particular, since $mu(n)d(n)$ is a multiplicative function, so is $sum_n'mid n mu(n')d(n')$...
$endgroup$
– Thomas Andrews
Jul 19 '14 at 18:32
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
add a comment |
$begingroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
$endgroup$
Another, Combinatorial, way would be like $$sum _d mu (d) d(d)=sum _i=0^w(n)sum _p_1<p_2 ldots < p_imu (p_1 dots p_i)d (p_1 dots p_i)=sum _i=0^w(n)binomw(n)i(-1)^i2^i=(1-2)^w(n)$$ where the $p_j$ are primes in the descomposition of $n$.
answered Jul 21 '14 at 2:23
PhicarPhicar
2,6601915
2,6601915
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f871933%2fprove-sum-k-mid-n-mukdk-1-omegan%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The book I am working out of is Niven's Introduction to the Theory of Numbers and they use $d$, so I've just gotten in the habit of using it. I know it's confusing. My professor did reveal that $tau$ was also used, but I guess I'm just used to the idea of $d$=divisor function.
$endgroup$
– Lalaloopsy
Jul 19 '14 at 18:32
5
$begingroup$
$d(d)$ is such a confusing notation...
$endgroup$
– CuriousGuest
Jul 20 '14 at 6:54