Skip to main content

Fesipapira Wan fri prenkiYu sabi taki...Sranan WikipediaFlosi gratiNavigatiemenukenkidyasokenki

Wp/srn


Sranantongo WikipediadyasometisortubobowatrametikawbakakawmetiBakratongomagaSranantongoMasonRei fu Presi ini SranankondreSkowruSrananSranankondreSrananmanGeografiRopaAsiAmrikaOseyaniyaAfrkaGrontapubeyfiBrudubergiWaywintiIngristongoBakratongoFranstongoItalilyanitongoPortugesotongoSpanyorotongoSranantongoKirkedomoBibelProtisidomoJesusTru Kerki fu JesusHinduismeSrananKondre MakandramekiBrasilKolombiVensweliArgentiniFrans-seyMid-seyKayanDaguPuspusiFisiKawLegwanaAsiPrakikiAlataKakafowruFowruKeskesiSkoroStoriSabiPratiNatruLibiBowDotiSonSakiBukuoriMoniTeriBasketbalTennisFutubalJuventusWegiliftuBosutuBeesbalSwenBowliTikotikoWikipediaKurówTePiacenza












Fesipapira




Fu Wikipedia






Naar navigatie springen
Naar zoeken springen




Odi! Disi na a Wikipedia ini Sranantongo. Wi abi 1.064 ha papira.

Yu Sranantongo kenki dyaso e ben aprisi. A e aksi fu a skopu fu a Sranantongo Wikipedia sa e ben bonmeki efu nanga oten da e ben bon papira. Oten a e ben bonmeki, ala papira dyaso e ben sa dribi na a tru Wikipedia.








Wan fri prenki



Tigerwater edit2.jpg

Yu sabi taki...



  • ... disi na a Sranantongo Wikipedia?
kenki


Sranan Wikipedia



Srananman ben aksi fu skopu someni top-kwaliti papira leki kan.

Rangi den kopireg, a inot nanga a kenki nyanman-nen. Yu kan dyaso peprewoysi aksa.


Wana taki en général? Go na a Singi nanga Spotu Uku. Taki do ruki!


Yepi kan dyaso nanga dyaso.




Flosi grati





Wan kawmeti


Kawmeti (Bos taurus) e ben wan metisortu u a gunomruhufu tiki fu a ordi Cetartiodactyla, famili Bovidae. A e ben wan bobowatrameti. A umali meti e ben nen wan kaw, a manli meti e ben nen wan stiri. Wan oks tu klosi e ben wan kastreri stiri. Wan rundi e ben wan domestiseri nakomili fu a sins a Medium Ten usterbi metisortu, a uroks Bos primigenius.


Da e sey disi ten proberi du disi urformu baka tu resi, tansi meti dy da uli strangu opo leki. Wan fu den pasa noni proberi e ben dy fu a brada Heck, a so nen Heckrundi. A e ben upresi ini den Oostvaardersplassen nanga da libi initen hurdi. Togi a skiba moli e sal bliki wan rundi nanga strangu uli leki baka tu resi e sal disi no ten wan tru uroks sey.


Leki bakakawmeti (Bakratongo: herkauwer) e abi wan kaw for maga; lebmaga, bukumaga, netmaga nanga pensmaga. Wan kaw e abi ini totali 32 tifi. Bofu a e abi a no ukutifi nanga festifi, 6 frubakatifi nanga 6 bakatifi. Ondro a e abi a 8 festifi, 6 frubakatifi nanga 6 bakatifi.




Leisi a sten...(ankra · kenki)
















Nuvola apps kcoloredit.svg


Sranan

Sranantongo - Mason - Rei fu Presi ini Sranankondre - Skowru - Sranan - Sranankondre - Srananman -



Gnome-globe.svg


Geografi

Geografi - Ropa - Asi - Amrika - Oseyaniya - Afrka - Grontapubeyfi - Brudubergi - Waywinti -



Nuvola apps bookcase.svg


Tongo

Ingristongo - Bakratongo - Franstongo - Italilyanitongo - Portugesotongo - Spanyorotongo - Sranantongo -



P religion world.svg


Bribi

Kirkedomo - Bibel - Protisidomo - Jesus - Tru Kerki fu Jesus - Hinduisme -












Nuvola apps kalzium.png


Kondre

Sranan - Kondre Makandrameki - Brasil - Kolombi - Vensweli - Argentini - Frans-sey - Mid-sey - Kayan -



Nuvola apps display.png


Meti

Dagu - Puspusi - Fisi - Kaw - Legwana - Asi - Prakiki - Alata - Kakafowru - Fowru - Keskesi



Nuvola apps kalzium.png


Skoro

Skoro - Stori - Sabi - Prati - Natru - Libi - Bow - Doti - Son - Saki - Bukuori - Moni - Teri -



Nuvola apps atlantik.png


Fesdoro

Basketbal - Tennis - Futubal - Juventus - Wegiliftu - Bosutu - Beesbal - Swen - Bowli - Tikotiko - Wikipedia - Kurów - Te - Piacenza -










Teki baka fu "https://srn.wikipedia.org/w/index.php?title=Fesipapira&oldid=37541"










Navigatiemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.084","walltime":"0.115","ppvisitednodes":"value":60,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":13467,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":16,"limit":40,"expensivefunctioncount":"value":11,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":446,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 43.768 1 -total"," 77.69% 34.003 1 Ankra:Fruwondruwiwiri/Odi"," 68.05% 29.782 1 Ankra:Fruwondruwiwiri/Odi/Dasu"," 29.16% 12.761 3 Wikipedia:Flosi_grati/Nomru"," 8.17% 3.575 1 Ankra:Fruwondruwiwiri/Rei"," 8.07% 3.533 1 Ankra:Fesipapira/Flosi_grati/4"," 7.58% 3.318 1 Ankra:SkopuPapira"," 6.96% 3.046 1 Ankra:Fruwondruwiwiri/Odi/Estresuni"," 6.15% 2.693 1 Ankra:SrananWikipedia"," 5.68% 2.487 1 Ankra:Fruwondruwiwiri/Interwiki"],"cachereport":"origin":"mw1335","timestamp":"20190328183702","ttl":3600,"transientcontent":true););"@context":"https://schema.org","@type":"Article","name":"Fesipapira","url":"https://srn.wikipedia.org/wiki/Fesipapira","sameAs":"http://www.wikidata.org/entity/Q5296","mainEntity":"http://www.wikidata.org/entity/Q5296","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2007-10-14T21:00:26Z","dateModified":"2017-04-19T12:20:47Z","image":"https://upload.wikimedia.org/wikipedia/commons/1/1c/Tigerwater_edit2.jpg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":230,"wgHostname":"mw1333"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε