Lower limit of a real functionReal Analysis Monotone Convergence Theorem QuestionProve that $liminf x_n = -limsup (-x_n)$$X_nleq Y_n$ implies $liminf X_n leq liminf Y_n$ and $limsup X_n leq limsup Y_n$Show that if the sequence$(x_n)$ is bounded, then $(x_n)$ converges iff $limsup(x_n)=liminf(x_n)$.Limit of the sequence given by $x_n+1=x_n-x_n^n+1$If $a_n$ is bounded sequence , prove that $limsuplimits_nto infty a_n=-liminflimits_nto infty(-a_n)$Understanding the definitions of limit superior and limit inferior of a real sequenceLimit of square root of sequence given value of limit of original sequenceRequest for assistance on finishing the proof that $lim_ntoinftyn x_n = 0$ given some initial conditions.Upper Limit Definition

Where does the Z80 processor start executing from?

Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?

Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?

What happens if you roll doubles 3 times then land on "Go to jail?"

Was a professor correct to chastise me for writing "Dear Prof. X" rather than "Dear Professor X"?

Escape a backup date in a file name

Is exact Kanji stroke length important?

A Rare Riley Riddle

Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?

Purchasing a ticket for someone else in another country?

What is the opposite of 'gravitas'?

Replace character with another only if repeated and not part of a word

Flow chart document symbol

Why Were Madagascar and New Zealand Discovered So Late?

Is HostGator storing my password in plaintext?

Pre-amplifier input protection

Is there a good way to store credentials outside of a password manager?

Increase performance creating Mandelbrot set in python

Applicability of Single Responsibility Principle

Failed to fetch jessie backports repository

What is the difference between "behavior" and "behaviour"?

Lay out the Carpet

Can the discrete variable be a negative number?

What is paid subscription needed for in Mortal Kombat 11?



Lower limit of a real function


Real Analysis Monotone Convergence Theorem QuestionProve that $liminf x_n = -limsup (-x_n)$$X_nleq Y_n$ implies $liminf X_n leq liminf Y_n$ and $limsup X_n leq limsup Y_n$Show that if the sequence$(x_n)$ is bounded, then $(x_n)$ converges iff $limsup(x_n)=liminf(x_n)$.Limit of the sequence given by $x_n+1=x_n-x_n^n+1$If $a_n$ is bounded sequence , prove that $limsuplimits_nto infty a_n=-liminflimits_nto infty(-a_n)$Understanding the definitions of limit superior and limit inferior of a real sequenceLimit of square root of sequence given value of limit of original sequenceRequest for assistance on finishing the proof that $lim_ntoinftyn x_n = 0$ given some initial conditions.Upper Limit Definition













0












$begingroup$



We define $f:X to Bbb R$ as a function, and $g: (0,1]to Bbb R$ defined by $$g(r) := inf_xin Br(x_0)f(x).$$
Denote $$
liminf_xto x_0f(x) := lim_rto 0^+g(r) = lim_rto 0^+inf_x∈Br(x_0)f(x).$$



i) Show that if $x_nto x_0$, then $liminflimits_nto inftyf(x_n) geq liminflimits_xto x_0 f(x)$.



ii) Show that there exists a sequence $x_n$ converging to $x_0$ such that $limlimits_nto inftyf(x_n) = liminflimits_xto x_0f(x).$




I have proven that limit of $g(r)$ as $r$ approaches $0$ exists and it is monotone decreasing. But I am confused as in isn't the definition of $liminflimits_xto x_0=inf liminflimits_nto infty f(x_n)$, which would prove both i) and ii) as trivial?










share|cite|improve this question











$endgroup$











  • $begingroup$
    My edit was for a minor typo.
    $endgroup$
    – DanielWainfleet
    21 hours ago










  • $begingroup$
    Re: The last line. We have $lim inf_xto x_0f(x)=inf lim inf_nto inftyf(x_n): (x_n)_nin Bbb Nin S$ where $S$ is the set of $ all $ sequences that converge to $x_0$. There may be some $(x_n)_xin Bbb Nin S$ such that $lim inf_nto infty f(x_n)$ does not converge to $lim inf_xto x_0f(x)$. For example let $f(x)=1$ when $xin Bbb Q$ and $f(x)=0$ when $xnot in Bbb Q,$ and $x_0=0.$ Then $f(1/n)to 1$ as $nto infty$ but $lim inf_xto 0f(x)=0.$
    $endgroup$
    – DanielWainfleet
    21 hours ago















0












$begingroup$



We define $f:X to Bbb R$ as a function, and $g: (0,1]to Bbb R$ defined by $$g(r) := inf_xin Br(x_0)f(x).$$
Denote $$
liminf_xto x_0f(x) := lim_rto 0^+g(r) = lim_rto 0^+inf_x∈Br(x_0)f(x).$$



i) Show that if $x_nto x_0$, then $liminflimits_nto inftyf(x_n) geq liminflimits_xto x_0 f(x)$.



ii) Show that there exists a sequence $x_n$ converging to $x_0$ such that $limlimits_nto inftyf(x_n) = liminflimits_xto x_0f(x).$




I have proven that limit of $g(r)$ as $r$ approaches $0$ exists and it is monotone decreasing. But I am confused as in isn't the definition of $liminflimits_xto x_0=inf liminflimits_nto infty f(x_n)$, which would prove both i) and ii) as trivial?










share|cite|improve this question











$endgroup$











  • $begingroup$
    My edit was for a minor typo.
    $endgroup$
    – DanielWainfleet
    21 hours ago










  • $begingroup$
    Re: The last line. We have $lim inf_xto x_0f(x)=inf lim inf_nto inftyf(x_n): (x_n)_nin Bbb Nin S$ where $S$ is the set of $ all $ sequences that converge to $x_0$. There may be some $(x_n)_xin Bbb Nin S$ such that $lim inf_nto infty f(x_n)$ does not converge to $lim inf_xto x_0f(x)$. For example let $f(x)=1$ when $xin Bbb Q$ and $f(x)=0$ when $xnot in Bbb Q,$ and $x_0=0.$ Then $f(1/n)to 1$ as $nto infty$ but $lim inf_xto 0f(x)=0.$
    $endgroup$
    – DanielWainfleet
    21 hours ago













0












0








0


1



$begingroup$



We define $f:X to Bbb R$ as a function, and $g: (0,1]to Bbb R$ defined by $$g(r) := inf_xin Br(x_0)f(x).$$
Denote $$
liminf_xto x_0f(x) := lim_rto 0^+g(r) = lim_rto 0^+inf_x∈Br(x_0)f(x).$$



i) Show that if $x_nto x_0$, then $liminflimits_nto inftyf(x_n) geq liminflimits_xto x_0 f(x)$.



ii) Show that there exists a sequence $x_n$ converging to $x_0$ such that $limlimits_nto inftyf(x_n) = liminflimits_xto x_0f(x).$




I have proven that limit of $g(r)$ as $r$ approaches $0$ exists and it is monotone decreasing. But I am confused as in isn't the definition of $liminflimits_xto x_0=inf liminflimits_nto infty f(x_n)$, which would prove both i) and ii) as trivial?










share|cite|improve this question











$endgroup$





We define $f:X to Bbb R$ as a function, and $g: (0,1]to Bbb R$ defined by $$g(r) := inf_xin Br(x_0)f(x).$$
Denote $$
liminf_xto x_0f(x) := lim_rto 0^+g(r) = lim_rto 0^+inf_x∈Br(x_0)f(x).$$



i) Show that if $x_nto x_0$, then $liminflimits_nto inftyf(x_n) geq liminflimits_xto x_0 f(x)$.



ii) Show that there exists a sequence $x_n$ converging to $x_0$ such that $limlimits_nto inftyf(x_n) = liminflimits_xto x_0f(x).$




I have proven that limit of $g(r)$ as $r$ approaches $0$ exists and it is monotone decreasing. But I am confused as in isn't the definition of $liminflimits_xto x_0=inf liminflimits_nto infty f(x_n)$, which would prove both i) and ii) as trivial?







real-analysis sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 21 hours ago









DanielWainfleet

35.7k31648




35.7k31648










asked yesterday









james blackjames black

419113




419113











  • $begingroup$
    My edit was for a minor typo.
    $endgroup$
    – DanielWainfleet
    21 hours ago










  • $begingroup$
    Re: The last line. We have $lim inf_xto x_0f(x)=inf lim inf_nto inftyf(x_n): (x_n)_nin Bbb Nin S$ where $S$ is the set of $ all $ sequences that converge to $x_0$. There may be some $(x_n)_xin Bbb Nin S$ such that $lim inf_nto infty f(x_n)$ does not converge to $lim inf_xto x_0f(x)$. For example let $f(x)=1$ when $xin Bbb Q$ and $f(x)=0$ when $xnot in Bbb Q,$ and $x_0=0.$ Then $f(1/n)to 1$ as $nto infty$ but $lim inf_xto 0f(x)=0.$
    $endgroup$
    – DanielWainfleet
    21 hours ago
















  • $begingroup$
    My edit was for a minor typo.
    $endgroup$
    – DanielWainfleet
    21 hours ago










  • $begingroup$
    Re: The last line. We have $lim inf_xto x_0f(x)=inf lim inf_nto inftyf(x_n): (x_n)_nin Bbb Nin S$ where $S$ is the set of $ all $ sequences that converge to $x_0$. There may be some $(x_n)_xin Bbb Nin S$ such that $lim inf_nto infty f(x_n)$ does not converge to $lim inf_xto x_0f(x)$. For example let $f(x)=1$ when $xin Bbb Q$ and $f(x)=0$ when $xnot in Bbb Q,$ and $x_0=0.$ Then $f(1/n)to 1$ as $nto infty$ but $lim inf_xto 0f(x)=0.$
    $endgroup$
    – DanielWainfleet
    21 hours ago















$begingroup$
My edit was for a minor typo.
$endgroup$
– DanielWainfleet
21 hours ago




$begingroup$
My edit was for a minor typo.
$endgroup$
– DanielWainfleet
21 hours ago












$begingroup$
Re: The last line. We have $lim inf_xto x_0f(x)=inf lim inf_nto inftyf(x_n): (x_n)_nin Bbb Nin S$ where $S$ is the set of $ all $ sequences that converge to $x_0$. There may be some $(x_n)_xin Bbb Nin S$ such that $lim inf_nto infty f(x_n)$ does not converge to $lim inf_xto x_0f(x)$. For example let $f(x)=1$ when $xin Bbb Q$ and $f(x)=0$ when $xnot in Bbb Q,$ and $x_0=0.$ Then $f(1/n)to 1$ as $nto infty$ but $lim inf_xto 0f(x)=0.$
$endgroup$
– DanielWainfleet
21 hours ago




$begingroup$
Re: The last line. We have $lim inf_xto x_0f(x)=inf lim inf_nto inftyf(x_n): (x_n)_nin Bbb Nin S$ where $S$ is the set of $ all $ sequences that converge to $x_0$. There may be some $(x_n)_xin Bbb Nin S$ such that $lim inf_nto infty f(x_n)$ does not converge to $lim inf_xto x_0f(x)$. For example let $f(x)=1$ when $xin Bbb Q$ and $f(x)=0$ when $xnot in Bbb Q,$ and $x_0=0.$ Then $f(1/n)to 1$ as $nto infty$ but $lim inf_xto 0f(x)=0.$
$endgroup$
– DanielWainfleet
21 hours ago










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164008%2flower-limit-of-a-real-function%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164008%2flower-limit-of-a-real-function%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu