Circle drawn on focal chord of a parabolaCircle Chord SequenceIntersection of parabola and circleLongest chord inside the intersection area of three circlesMaximum product of lengths involving secant drawn to a parabola.Prove that the directrix is tangent to the circles that are drawn on a focal chord of a parabola as diameter.Show that the circle drawn on a focal chord of a parabola $y^2=4ax$, as a diameter touches the directrixUnable to prove a statement regarding circles and trigonometry.Converse of a theorem for parabolasChord tangent to two circlesPossibly wrong question in S L Loney Coordinate Geometry

Is the destination of a commercial flight important for the pilot?

What to do with wrong results in talks?

Is there a problem with hiding "forgot password" until it's needed?

Is expanding the research of a group into machine learning as a PhD student risky?

Class Action - which options I have?

Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?

Applicability of Single Responsibility Principle

Why didn't Theresa May consult with Parliament before negotiating a deal with the EU?

Is a stroke of luck acceptable after a series of unfavorable events?

How can we prove that any integral in the set of non-elementary integrals cannot be expressed in the form of elementary functions?

How to Reset Passwords on Multiple Websites Easily?

Are student evaluations of teaching assistants read by others in the faculty?

How did Arya survive the stabbing?

India just shot down a satellite from the ground. At what altitude range is the resulting debris field?

Is HostGator storing my password in plaintext?

How does it work when somebody invests in my business?

Lay out the Carpet

Unexpected indention in bibliography items (beamer)

Proof of work - lottery approach

Integer addition + constant, is it a group?

Gears on left are inverse to gears on right?

Nautlius: add mouse right-click action to compute MD5 sum

How do I go from 300 unfinished/half written blog posts, to published posts?

Detecting if an element is found inside a container



Circle drawn on focal chord of a parabola


Circle Chord SequenceIntersection of parabola and circleLongest chord inside the intersection area of three circlesMaximum product of lengths involving secant drawn to a parabola.Prove that the directrix is tangent to the circles that are drawn on a focal chord of a parabola as diameter.Show that the circle drawn on a focal chord of a parabola $y^2=4ax$, as a diameter touches the directrixUnable to prove a statement regarding circles and trigonometry.Converse of a theorem for parabolasChord tangent to two circlesPossibly wrong question in S L Loney Coordinate Geometry













0












$begingroup$


Is it possible for a circle with diameter as the focal chord of a parabola to cut the parabola at 4 points (2 being the extremities of the focal chord)?



We were asked to find the product of the parameters(t) of the point cut by the circle on the parabola (other than the extremities of the focal chord).Doing some algebra we obtain this product as 3,but I feel that the parameters would be imaginary since I don't think that such a circle can exist.Am I correct?










share|cite|improve this question









$endgroup$











  • $begingroup$
    What do you mean by “the” focal chord? There is an infinite number of them.
    $endgroup$
    – amd
    3 hours ago















0












$begingroup$


Is it possible for a circle with diameter as the focal chord of a parabola to cut the parabola at 4 points (2 being the extremities of the focal chord)?



We were asked to find the product of the parameters(t) of the point cut by the circle on the parabola (other than the extremities of the focal chord).Doing some algebra we obtain this product as 3,but I feel that the parameters would be imaginary since I don't think that such a circle can exist.Am I correct?










share|cite|improve this question









$endgroup$











  • $begingroup$
    What do you mean by “the” focal chord? There is an infinite number of them.
    $endgroup$
    – amd
    3 hours ago













0












0








0





$begingroup$


Is it possible for a circle with diameter as the focal chord of a parabola to cut the parabola at 4 points (2 being the extremities of the focal chord)?



We were asked to find the product of the parameters(t) of the point cut by the circle on the parabola (other than the extremities of the focal chord).Doing some algebra we obtain this product as 3,but I feel that the parameters would be imaginary since I don't think that such a circle can exist.Am I correct?










share|cite|improve this question









$endgroup$




Is it possible for a circle with diameter as the focal chord of a parabola to cut the parabola at 4 points (2 being the extremities of the focal chord)?



We were asked to find the product of the parameters(t) of the point cut by the circle on the parabola (other than the extremities of the focal chord).Doing some algebra we obtain this product as 3,but I feel that the parameters would be imaginary since I don't think that such a circle can exist.Am I correct?







analytic-geometry circles conic-sections






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 15 hours ago









Vaishakh Sreekanth MenonVaishakh Sreekanth Menon

293




293











  • $begingroup$
    What do you mean by “the” focal chord? There is an infinite number of them.
    $endgroup$
    – amd
    3 hours ago
















  • $begingroup$
    What do you mean by “the” focal chord? There is an infinite number of them.
    $endgroup$
    – amd
    3 hours ago















$begingroup$
What do you mean by “the” focal chord? There is an infinite number of them.
$endgroup$
– amd
3 hours ago




$begingroup$
What do you mean by “the” focal chord? There is an infinite number of them.
$endgroup$
– amd
3 hours ago










1 Answer
1






active

oldest

votes


















1












$begingroup$

You are right. There are no such real points. If the equation of the parabola is $y^2=4px$, the radius of your circle is $|y(p)|=2p$. But then, the distance from any point on the circle to the focus is $2p$, whereas the distance to the directrix, on the left side of the circle, is less than $2p$ (the $x$-coordinate of those points is less than $p$) and, on the right half, larger than $2p$. Therefore, there are no other real intersections with the parabola, since on the parabola the two distances are equal.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
    $endgroup$
    – nickgard
    8 hours ago










  • $begingroup$
    Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
    $endgroup$
    – amd
    2 hours ago











  • $begingroup$
    I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
    $endgroup$
    – GReyes
    16 mins ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164169%2fcircle-drawn-on-focal-chord-of-a-parabola%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

You are right. There are no such real points. If the equation of the parabola is $y^2=4px$, the radius of your circle is $|y(p)|=2p$. But then, the distance from any point on the circle to the focus is $2p$, whereas the distance to the directrix, on the left side of the circle, is less than $2p$ (the $x$-coordinate of those points is less than $p$) and, on the right half, larger than $2p$. Therefore, there are no other real intersections with the parabola, since on the parabola the two distances are equal.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
    $endgroup$
    – nickgard
    8 hours ago










  • $begingroup$
    Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
    $endgroup$
    – amd
    2 hours ago











  • $begingroup$
    I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
    $endgroup$
    – GReyes
    16 mins ago
















1












$begingroup$

You are right. There are no such real points. If the equation of the parabola is $y^2=4px$, the radius of your circle is $|y(p)|=2p$. But then, the distance from any point on the circle to the focus is $2p$, whereas the distance to the directrix, on the left side of the circle, is less than $2p$ (the $x$-coordinate of those points is less than $p$) and, on the right half, larger than $2p$. Therefore, there are no other real intersections with the parabola, since on the parabola the two distances are equal.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
    $endgroup$
    – nickgard
    8 hours ago










  • $begingroup$
    Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
    $endgroup$
    – amd
    2 hours ago











  • $begingroup$
    I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
    $endgroup$
    – GReyes
    16 mins ago














1












1








1





$begingroup$

You are right. There are no such real points. If the equation of the parabola is $y^2=4px$, the radius of your circle is $|y(p)|=2p$. But then, the distance from any point on the circle to the focus is $2p$, whereas the distance to the directrix, on the left side of the circle, is less than $2p$ (the $x$-coordinate of those points is less than $p$) and, on the right half, larger than $2p$. Therefore, there are no other real intersections with the parabola, since on the parabola the two distances are equal.






share|cite|improve this answer









$endgroup$



You are right. There are no such real points. If the equation of the parabola is $y^2=4px$, the radius of your circle is $|y(p)|=2p$. But then, the distance from any point on the circle to the focus is $2p$, whereas the distance to the directrix, on the left side of the circle, is less than $2p$ (the $x$-coordinate of those points is less than $p$) and, on the right half, larger than $2p$. Therefore, there are no other real intersections with the parabola, since on the parabola the two distances are equal.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 15 hours ago









GReyesGReyes

2,31315




2,31315







  • 1




    $begingroup$
    What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
    $endgroup$
    – nickgard
    8 hours ago










  • $begingroup$
    Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
    $endgroup$
    – amd
    2 hours ago











  • $begingroup$
    I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
    $endgroup$
    – GReyes
    16 mins ago













  • 1




    $begingroup$
    What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
    $endgroup$
    – nickgard
    8 hours ago










  • $begingroup$
    Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
    $endgroup$
    – amd
    2 hours ago











  • $begingroup$
    I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
    $endgroup$
    – GReyes
    16 mins ago








1




1




$begingroup$
What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
$endgroup$
– nickgard
8 hours ago




$begingroup$
What's described here is only true of the latus rectum. Counterexample: the parabola $y^2=x$, with focus at $(1/4,0)$ and the focal chord drawn through the point $(4,2)$. A circle on this focal chord cuts the parabola in $4$ points.
$endgroup$
– nickgard
8 hours ago












$begingroup$
Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
$endgroup$
– amd
2 hours ago





$begingroup$
Indeed. For the parabola $x^2=4y$, any focal chord with slope outside the interval $[-sqrt3,sqrt3]$ will generate four intersection points.
$endgroup$
– amd
2 hours ago













$begingroup$
I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
$endgroup$
– GReyes
16 mins ago





$begingroup$
I agree. For some reason I understood that the focal chord referred to the latus rectum, probably the use of "the" instead of "a". Not true for a general chord through the focus, of course.
$endgroup$
– GReyes
16 mins ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164169%2fcircle-drawn-on-focal-chord-of-a-parabola%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu