Definition of SubgroupGroup proof/disproofProve a group is an abelian groupInfinite groups admitting field structureAdditive non-abelian group?Restricting Binary Operator $*$ To A SubsetSubgroup of finitely generated abelian group is finitely generatedeach finite group with abelian chain induces cyclic chainGroup and subgroupWhy is the commutator subgroup of the group associated to a finite quandle finitely generated?Ring theory (plz guide me what the meaning of statement 1,2 and 3)nontrivial solvable group contains a nontrivial characteristic abelian subgroup

Type int? vs type int

Is this apparent Class Action settlement a spam message?

How do I go from 300 unfinished/half written blog posts, to published posts?

Is the destination of a commercial flight important for the pilot?

Why escape if the_content isnt?

Risk of infection at the gym?

How to draw lines on a tikz-cd diagram

Why, precisely, is argon used in neutrino experiments?

How to Reset Passwords on Multiple Websites Easily?

How to run a prison with the smallest amount of guards?

Increase performance creating Mandelbrot set in python

Opposite of a diet

Balance Issues for a Custom Sorcerer Variant

What happens if you roll doubles 3 times then land on "Go to jail?"

Implement the Thanos sorting algorithm

Anatomically Correct Strange Women In Ponds Distributing Swords

Do sorcerers' subtle spells require a skill check to be unseen?

CREATE opcode: what does it really do?

You cannot touch me, but I can touch you, who am I?

What is the difference between "behavior" and "behaviour"?

Go Pregnant or Go Home

Is expanding the research of a group into machine learning as a PhD student risky?

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

Gears on left are inverse to gears on right?



Definition of Subgroup


Group proof/disproofProve a group is an abelian groupInfinite groups admitting field structureAdditive non-abelian group?Restricting Binary Operator $*$ To A SubsetSubgroup of finitely generated abelian group is finitely generatedeach finite group with abelian chain induces cyclic chainGroup and subgroupWhy is the commutator subgroup of the group associated to a finite quandle finitely generated?Ring theory (plz guide me what the meaning of statement 1,2 and 3)nontrivial solvable group contains a nontrivial characteristic abelian subgroup













1












$begingroup$


I know that an abelian group is a set G, with a binary operation $$ + : G times G rightarrow G \ (a,b) mapsto+(a,b)=: a+b$$ such that for every $a,b,c in G$



i) $exists 0 in G $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



iii) $a + (b + c) = (a +b) + c$



iv) $a+b = b+a$



Now, I need a little help with the concept of subgroup. Intuitively I think of that as a subset of a group that is also a group. So because we select elements from a group G, iii) and iv) are automatically satisfied. With that idea I would define a subgroup as:



A subgroup of a group $G$ is a subset $G_0$ such that for every $a in G_0$ :



i) $exists 0 in G_0 $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



But instead I have the following definition



An abelian group, $ A_0 subseteq A$ it said to be an abelian subgroup if



i) $0 in A_0$



ii) $forall a,b in A_0 a-b in A_0$



Are those equivalent? or there is something that I am missing?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Regarding subgroup criterion, see my answer there, though there the group is written multiplicatively (not necessarily Abelian)
    $endgroup$
    – J. W. Tanner
    22 hours ago











  • $begingroup$
    I suppose $A$ must be an abelian group? (The grammar seems confusing to me.)
    $endgroup$
    – Diglett
    15 hours ago















1












$begingroup$


I know that an abelian group is a set G, with a binary operation $$ + : G times G rightarrow G \ (a,b) mapsto+(a,b)=: a+b$$ such that for every $a,b,c in G$



i) $exists 0 in G $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



iii) $a + (b + c) = (a +b) + c$



iv) $a+b = b+a$



Now, I need a little help with the concept of subgroup. Intuitively I think of that as a subset of a group that is also a group. So because we select elements from a group G, iii) and iv) are automatically satisfied. With that idea I would define a subgroup as:



A subgroup of a group $G$ is a subset $G_0$ such that for every $a in G_0$ :



i) $exists 0 in G_0 $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



But instead I have the following definition



An abelian group, $ A_0 subseteq A$ it said to be an abelian subgroup if



i) $0 in A_0$



ii) $forall a,b in A_0 a-b in A_0$



Are those equivalent? or there is something that I am missing?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Regarding subgroup criterion, see my answer there, though there the group is written multiplicatively (not necessarily Abelian)
    $endgroup$
    – J. W. Tanner
    22 hours ago











  • $begingroup$
    I suppose $A$ must be an abelian group? (The grammar seems confusing to me.)
    $endgroup$
    – Diglett
    15 hours ago













1












1








1





$begingroup$


I know that an abelian group is a set G, with a binary operation $$ + : G times G rightarrow G \ (a,b) mapsto+(a,b)=: a+b$$ such that for every $a,b,c in G$



i) $exists 0 in G $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



iii) $a + (b + c) = (a +b) + c$



iv) $a+b = b+a$



Now, I need a little help with the concept of subgroup. Intuitively I think of that as a subset of a group that is also a group. So because we select elements from a group G, iii) and iv) are automatically satisfied. With that idea I would define a subgroup as:



A subgroup of a group $G$ is a subset $G_0$ such that for every $a in G_0$ :



i) $exists 0 in G_0 $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



But instead I have the following definition



An abelian group, $ A_0 subseteq A$ it said to be an abelian subgroup if



i) $0 in A_0$



ii) $forall a,b in A_0 a-b in A_0$



Are those equivalent? or there is something that I am missing?










share|cite|improve this question









$endgroup$




I know that an abelian group is a set G, with a binary operation $$ + : G times G rightarrow G \ (a,b) mapsto+(a,b)=: a+b$$ such that for every $a,b,c in G$



i) $exists 0 in G $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



iii) $a + (b + c) = (a +b) + c$



iv) $a+b = b+a$



Now, I need a little help with the concept of subgroup. Intuitively I think of that as a subset of a group that is also a group. So because we select elements from a group G, iii) and iv) are automatically satisfied. With that idea I would define a subgroup as:



A subgroup of a group $G$ is a subset $G_0$ such that for every $a in G_0$ :



i) $exists 0 in G_0 $ such that $ a+0 = a$



ii) $exists a'$ such that $a + a' = 0$



But instead I have the following definition



An abelian group, $ A_0 subseteq A$ it said to be an abelian subgroup if



i) $0 in A_0$



ii) $forall a,b in A_0 a-b in A_0$



Are those equivalent? or there is something that I am missing?







abstract-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 22 hours ago









José MarínJosé Marín

183210




183210







  • 1




    $begingroup$
    Regarding subgroup criterion, see my answer there, though there the group is written multiplicatively (not necessarily Abelian)
    $endgroup$
    – J. W. Tanner
    22 hours ago











  • $begingroup$
    I suppose $A$ must be an abelian group? (The grammar seems confusing to me.)
    $endgroup$
    – Diglett
    15 hours ago












  • 1




    $begingroup$
    Regarding subgroup criterion, see my answer there, though there the group is written multiplicatively (not necessarily Abelian)
    $endgroup$
    – J. W. Tanner
    22 hours ago











  • $begingroup$
    I suppose $A$ must be an abelian group? (The grammar seems confusing to me.)
    $endgroup$
    – Diglett
    15 hours ago







1




1




$begingroup$
Regarding subgroup criterion, see my answer there, though there the group is written multiplicatively (not necessarily Abelian)
$endgroup$
– J. W. Tanner
22 hours ago





$begingroup$
Regarding subgroup criterion, see my answer there, though there the group is written multiplicatively (not necessarily Abelian)
$endgroup$
– J. W. Tanner
22 hours ago













$begingroup$
I suppose $A$ must be an abelian group? (The grammar seems confusing to me.)
$endgroup$
– Diglett
15 hours ago




$begingroup$
I suppose $A$ must be an abelian group? (The grammar seems confusing to me.)
$endgroup$
– Diglett
15 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Your definition would allow $-1, 0, 1$ to be a subgroup of the integers under addition. It's not since it doesn't contain $1+1$.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    An abelian subgroup satisfies $a+b=b+a$ rather than $a-b in A_0$. Any non-empty subset of a group $A_0$ satisfying $a-b in A_0$ is in fact a subgroup and this property is called the subgroup criterion. It doesn't not force the subgroup to be abelian.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163972%2fdefinition-of-subgroup%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Your definition would allow $-1, 0, 1$ to be a subgroup of the integers under addition. It's not since it doesn't contain $1+1$.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        Your definition would allow $-1, 0, 1$ to be a subgroup of the integers under addition. It's not since it doesn't contain $1+1$.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          Your definition would allow $-1, 0, 1$ to be a subgroup of the integers under addition. It's not since it doesn't contain $1+1$.






          share|cite|improve this answer









          $endgroup$



          Your definition would allow $-1, 0, 1$ to be a subgroup of the integers under addition. It's not since it doesn't contain $1+1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 22 hours ago









          Ethan BolkerEthan Bolker

          45.4k553120




          45.4k553120





















              0












              $begingroup$

              An abelian subgroup satisfies $a+b=b+a$ rather than $a-b in A_0$. Any non-empty subset of a group $A_0$ satisfying $a-b in A_0$ is in fact a subgroup and this property is called the subgroup criterion. It doesn't not force the subgroup to be abelian.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                An abelian subgroup satisfies $a+b=b+a$ rather than $a-b in A_0$. Any non-empty subset of a group $A_0$ satisfying $a-b in A_0$ is in fact a subgroup and this property is called the subgroup criterion. It doesn't not force the subgroup to be abelian.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  An abelian subgroup satisfies $a+b=b+a$ rather than $a-b in A_0$. Any non-empty subset of a group $A_0$ satisfying $a-b in A_0$ is in fact a subgroup and this property is called the subgroup criterion. It doesn't not force the subgroup to be abelian.






                  share|cite|improve this answer









                  $endgroup$



                  An abelian subgroup satisfies $a+b=b+a$ rather than $a-b in A_0$. Any non-empty subset of a group $A_0$ satisfying $a-b in A_0$ is in fact a subgroup and this property is called the subgroup criterion. It doesn't not force the subgroup to be abelian.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 22 hours ago









                  CyclotomicFieldCyclotomicField

                  2,4431314




                  2,4431314



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3163972%2fdefinition-of-subgroup%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu