Finding $limlimits_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$Evaluate $int_0^1 frac1 x^2+2x+3,mathrm dx$Show how $fracpartialpartial x left[int_0^x (x-t)g(t),mathrmdtright] = int_0^x g(t),mathrmdt$Evaluate $large int_0^1left(frac1ln x + frac11-xright)^2 mathrm dx $ using elementary, high school techniquesFind the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$L'Hopital rule to solve $ limlimits_xto 0 left(fracsin xxright)^frac1x^2 $Compute the limit $lim_ntoinfty nleft [int_0^frac pi4tan^n left ( fracxn right )mathrm dxright]^frac1n$How to find $limlimits_xto 0^+ frac1x int_0^x sin(frac1t),mathrm dt$$n^2 int_0^1 (1-x)^n sin(pi x) mathrmdx$If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$

Crossing the line between justified force and brutality

Is this apparent Class Action settlement a spam message?

How does Loki do this?

System.debug(JSON.Serialize(o)) Not longer shows full string

Term for the "extreme-extension" version of a straw man fallacy?

Class Action - which options I have?

How to check is there any negative term in a large list?

How does buying out courses with grant money work?

Pole-zeros of a real-valued causal FIR system

How do I find the solutions of the following equation?

Is exact Kanji stroke length important?

Why escape if the_content isnt?

Customer Requests (Sometimes) Drive Me Bonkers!

Implement the Thanos sorting algorithm

How easy is it to start Magic from scratch?

What is the opposite of 'gravitas'?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Is a stroke of luck acceptable after a series of unfavorable events?

Integer addition + constant, is it a group?

How does the UK government determine the size of a mandate?

Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?

Escape a backup date in a file name

Is there a korbon needed for conversion?

Where does the Z80 processor start executing from?



Finding $limlimits_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$


Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$Evaluate $int_0^1 frac1 x^2+2x+3,mathrm dx$Show how $fracpartialpartial x left[int_0^x (x-t)g(t),mathrmdtright] = int_0^x g(t),mathrmdt$Evaluate $large int_0^1left(frac1ln x + frac11-xright)^2 mathrm dx $ using elementary, high school techniquesFind the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$L'Hopital rule to solve $ limlimits_xto 0 left(fracsin xxright)^frac1x^2 $Compute the limit $lim_ntoinfty nleft [int_0^frac pi4tan^n left ( fracxn right )mathrm dxright]^frac1n$How to find $limlimits_xto 0^+ frac1x int_0^x sin(frac1t),mathrm dt$$n^2 int_0^1 (1-x)^n sin(pi x) mathrmdx$If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$













5












$begingroup$


$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    22 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    21 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    21 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    21 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    17 hours ago















5












$begingroup$


$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    22 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    21 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    21 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    21 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    17 hours ago













5












5








5


4



$begingroup$


$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!










share|cite|improve this question











$endgroup$




$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!







calculus integration limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 18 hours ago









rash

550115




550115










asked 22 hours ago









赵家艺赵家艺

362




362











  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    22 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    21 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    21 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    21 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    17 hours ago
















  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    22 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    21 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    21 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    21 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    17 hours ago















$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago




$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago












$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago




$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago












$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago




$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago












$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago





$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago





1




1




$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago




$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    Result



    Let



    $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



    then



    $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



    This result is in good agreement with the numerical estimate of the integral.



    Derivation



    This is more heuristic and not really strict. Maybe others can fill in the gaps.



    We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



    $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



    where



    $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



    The first two values are



    $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
    $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



    and for $k ge 3$



    $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



    Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



    The sum in $(1)$ telescopes and we are left with the announced result.



    Discussion



    My statement "the sum telescopes" is fairly bold.



    In fact, the cancellation is like this



    $$textCi(-4 pi )-textCi(4 pi )=i pi$$
    $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



    see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






    share|cite|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164171%2ffinding-lim-limits-n-to-infty-frac1n2-int-0-frac-pi2x-left-frac-si%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      8












      $begingroup$

      From
      $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
      for $xin(0,fracpi 2)$, there is $C$ such that
      $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



      Thus,
      beginalign*
      lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
      &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
      &= int_0^inftyfracsin^4 xx^3, mathrm dx\
      text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
      text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
      &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
      text(Frullani)quad &=ln 2.
      endalign*






      share|cite|improve this answer









      $endgroup$

















        8












        $begingroup$

        From
        $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
        for $xin(0,fracpi 2)$, there is $C$ such that
        $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



        Thus,
        beginalign*
        lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
        &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
        &= int_0^inftyfracsin^4 xx^3, mathrm dx\
        text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
        text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
        &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
        text(Frullani)quad &=ln 2.
        endalign*






        share|cite|improve this answer









        $endgroup$















          8












          8








          8





          $begingroup$

          From
          $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
          for $xin(0,fracpi 2)$, there is $C$ such that
          $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



          Thus,
          beginalign*
          lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
          &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
          &= int_0^inftyfracsin^4 xx^3, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
          &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
          text(Frullani)quad &=ln 2.
          endalign*






          share|cite|improve this answer









          $endgroup$



          From
          $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
          for $xin(0,fracpi 2)$, there is $C$ such that
          $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



          Thus,
          beginalign*
          lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
          &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
          &= int_0^inftyfracsin^4 xx^3, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
          &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
          text(Frullani)quad &=ln 2.
          endalign*







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 19 hours ago









          TianlaluTianlalu

          3,16721138




          3,16721138





















              4












              $begingroup$

              Result



              Let



              $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



              then



              $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



              This result is in good agreement with the numerical estimate of the integral.



              Derivation



              This is more heuristic and not really strict. Maybe others can fill in the gaps.



              We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



              $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



              where



              $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



              The first two values are



              $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
              $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



              and for $k ge 3$



              $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



              Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



              The sum in $(1)$ telescopes and we are left with the announced result.



              Discussion



              My statement "the sum telescopes" is fairly bold.



              In fact, the cancellation is like this



              $$textCi(-4 pi )-textCi(4 pi )=i pi$$
              $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



              see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






              share|cite|improve this answer











              $endgroup$

















                4












                $begingroup$

                Result



                Let



                $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



                then



                $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



                This result is in good agreement with the numerical estimate of the integral.



                Derivation



                This is more heuristic and not really strict. Maybe others can fill in the gaps.



                We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



                $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



                where



                $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



                The first two values are



                $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
                $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



                and for $k ge 3$



                $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



                Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



                The sum in $(1)$ telescopes and we are left with the announced result.



                Discussion



                My statement "the sum telescopes" is fairly bold.



                In fact, the cancellation is like this



                $$textCi(-4 pi )-textCi(4 pi )=i pi$$
                $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



                see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






                share|cite|improve this answer











                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  Result



                  Let



                  $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



                  then



                  $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



                  This result is in good agreement with the numerical estimate of the integral.



                  Derivation



                  This is more heuristic and not really strict. Maybe others can fill in the gaps.



                  We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



                  $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



                  where



                  $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



                  The first two values are



                  $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
                  $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



                  and for $k ge 3$



                  $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



                  Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



                  The sum in $(1)$ telescopes and we are left with the announced result.



                  Discussion



                  My statement "the sum telescopes" is fairly bold.



                  In fact, the cancellation is like this



                  $$textCi(-4 pi )-textCi(4 pi )=i pi$$
                  $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



                  see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






                  share|cite|improve this answer











                  $endgroup$



                  Result



                  Let



                  $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



                  then



                  $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



                  This result is in good agreement with the numerical estimate of the integral.



                  Derivation



                  This is more heuristic and not really strict. Maybe others can fill in the gaps.



                  We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



                  $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



                  where



                  $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



                  The first two values are



                  $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
                  $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



                  and for $k ge 3$



                  $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



                  Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



                  The sum in $(1)$ telescopes and we are left with the announced result.



                  Discussion



                  My statement "the sum telescopes" is fairly bold.



                  In fact, the cancellation is like this



                  $$textCi(-4 pi )-textCi(4 pi )=i pi$$
                  $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



                  see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 18 hours ago

























                  answered 20 hours ago









                  Dr. Wolfgang HintzeDr. Wolfgang Hintze

                  3,825620




                  3,825620



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164171%2ffinding-lim-limits-n-to-infty-frac1n2-int-0-frac-pi2x-left-frac-si%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu