Finding $limlimits_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$Evaluate $int_0^1 frac1 x^2+2x+3,mathrm dx$Show how $fracpartialpartial x left[int_0^x (x-t)g(t),mathrmdtright] = int_0^x g(t),mathrmdt$Evaluate $large int_0^1left(frac1ln x + frac11-xright)^2 mathrm dx $ using elementary, high school techniquesFind the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$L'Hopital rule to solve $ limlimits_xto 0 left(fracsin xxright)^frac1x^2 $Compute the limit $lim_ntoinfty nleft [int_0^frac pi4tan^n left ( fracxn right )mathrm dxright]^frac1n$How to find $limlimits_xto 0^+ frac1x int_0^x sin(frac1t),mathrm dt$$n^2 int_0^1 (1-x)^n sin(pi x) mathrmdx$If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$
Crossing the line between justified force and brutality
Is this apparent Class Action settlement a spam message?
How does Loki do this?
System.debug(JSON.Serialize(o)) Not longer shows full string
Term for the "extreme-extension" version of a straw man fallacy?
Class Action - which options I have?
How to check is there any negative term in a large list?
How does buying out courses with grant money work?
Pole-zeros of a real-valued causal FIR system
How do I find the solutions of the following equation?
Is exact Kanji stroke length important?
Why escape if the_content isnt?
Customer Requests (Sometimes) Drive Me Bonkers!
Implement the Thanos sorting algorithm
How easy is it to start Magic from scratch?
What is the opposite of 'gravitas'?
Tiptoe or tiphoof? Adjusting words to better fit fantasy races
Is a stroke of luck acceptable after a series of unfavorable events?
Integer addition + constant, is it a group?
How does the UK government determine the size of a mandate?
Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?
Escape a backup date in a file name
Is there a korbon needed for conversion?
Where does the Z80 processor start executing from?
Finding $limlimits_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$
Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$Evaluate $int_0^1 frac1 x^2+2x+3,mathrm dx$Show how $fracpartialpartial x left[int_0^x (x-t)g(t),mathrmdtright] = int_0^x g(t),mathrmdt$Evaluate $large int_0^1left(frac1ln x + frac11-xright)^2 mathrm dx $ using elementary, high school techniquesFind the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$L'Hopital rule to solve $ limlimits_xto 0 left(fracsin xxright)^frac1x^2 $Compute the limit $lim_ntoinfty nleft [int_0^frac pi4tan^n left ( fracxn right )mathrm dxright]^frac1n$How to find $limlimits_xto 0^+ frac1x int_0^x sin(frac1t),mathrm dt$$n^2 int_0^1 (1-x)^n sin(pi x) mathrmdx$If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$
$begingroup$
$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!
calculus integration limits
$endgroup$
|
show 1 more comment
$begingroup$
$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!
calculus integration limits
$endgroup$
$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago
$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago
$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago
$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago
1
$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago
|
show 1 more comment
$begingroup$
$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!
calculus integration limits
$endgroup$
$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!
calculus integration limits
calculus integration limits
edited 18 hours ago
rash
550115
550115
asked 22 hours ago
赵家艺赵家艺
362
362
$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago
$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago
$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago
$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago
1
$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago
|
show 1 more comment
$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago
$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago
$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago
$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago
1
$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago
$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago
$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago
$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago
$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago
$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago
$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago
$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago
$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago
1
1
$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago
$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$
Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*
$endgroup$
add a comment |
$begingroup$
Result
Let
$$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$
then
$$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$
This result is in good agreement with the numerical estimate of the integral.
Derivation
This is more heuristic and not really strict. Maybe others can fill in the gaps.
We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get
$$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$
where
$$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$
The first two values are
$$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
$$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$
and for $k ge 3$
$$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$
Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.
The sum in $(1)$ telescopes and we are left with the announced result.
Discussion
My statement "the sum telescopes" is fairly bold.
In fact, the cancellation is like this
$$textCi(-4 pi )-textCi(4 pi )=i pi$$
$$textCi(8 pi )-textCi(-8 pi )=-i pi$$
see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164171%2ffinding-lim-limits-n-to-infty-frac1n2-int-0-frac-pi2x-left-frac-si%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$
Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*
$endgroup$
add a comment |
$begingroup$
From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$
Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*
$endgroup$
add a comment |
$begingroup$
From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$
Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*
$endgroup$
From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$
Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*
answered 19 hours ago
TianlaluTianlalu
3,16721138
3,16721138
add a comment |
add a comment |
$begingroup$
Result
Let
$$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$
then
$$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$
This result is in good agreement with the numerical estimate of the integral.
Derivation
This is more heuristic and not really strict. Maybe others can fill in the gaps.
We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get
$$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$
where
$$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$
The first two values are
$$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
$$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$
and for $k ge 3$
$$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$
Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.
The sum in $(1)$ telescopes and we are left with the announced result.
Discussion
My statement "the sum telescopes" is fairly bold.
In fact, the cancellation is like this
$$textCi(-4 pi )-textCi(4 pi )=i pi$$
$$textCi(8 pi )-textCi(-8 pi )=-i pi$$
see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.
$endgroup$
add a comment |
$begingroup$
Result
Let
$$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$
then
$$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$
This result is in good agreement with the numerical estimate of the integral.
Derivation
This is more heuristic and not really strict. Maybe others can fill in the gaps.
We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get
$$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$
where
$$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$
The first two values are
$$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
$$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$
and for $k ge 3$
$$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$
Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.
The sum in $(1)$ telescopes and we are left with the announced result.
Discussion
My statement "the sum telescopes" is fairly bold.
In fact, the cancellation is like this
$$textCi(-4 pi )-textCi(4 pi )=i pi$$
$$textCi(8 pi )-textCi(-8 pi )=-i pi$$
see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.
$endgroup$
add a comment |
$begingroup$
Result
Let
$$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$
then
$$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$
This result is in good agreement with the numerical estimate of the integral.
Derivation
This is more heuristic and not really strict. Maybe others can fill in the gaps.
We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get
$$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$
where
$$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$
The first two values are
$$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
$$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$
and for $k ge 3$
$$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$
Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.
The sum in $(1)$ telescopes and we are left with the announced result.
Discussion
My statement "the sum telescopes" is fairly bold.
In fact, the cancellation is like this
$$textCi(-4 pi )-textCi(4 pi )=i pi$$
$$textCi(8 pi )-textCi(-8 pi )=-i pi$$
see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.
$endgroup$
Result
Let
$$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$
then
$$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$
This result is in good agreement with the numerical estimate of the integral.
Derivation
This is more heuristic and not really strict. Maybe others can fill in the gaps.
We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get
$$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$
where
$$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$
The first two values are
$$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
$$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$
and for $k ge 3$
$$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$
Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.
The sum in $(1)$ telescopes and we are left with the announced result.
Discussion
My statement "the sum telescopes" is fairly bold.
In fact, the cancellation is like this
$$textCi(-4 pi )-textCi(4 pi )=i pi$$
$$textCi(8 pi )-textCi(-8 pi )=-i pi$$
see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.
edited 18 hours ago
answered 20 hours ago
Dr. Wolfgang HintzeDr. Wolfgang Hintze
3,825620
3,825620
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164171%2ffinding-lim-limits-n-to-infty-frac1n2-int-0-frac-pi2x-left-frac-si%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
22 hours ago
$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
21 hours ago
$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
21 hours ago
$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
21 hours ago
1
$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
17 hours ago