Find n from summationFind the original function in a summationSummation of $i cdot j$ from $ 1$ to$ 3$Evaluating Summation of $5^-n$ from $n=4$ to infinityExtract a variable from the following summationCalculating summation on integer numbers from $-infty$ to $infty$Order of growth from summationHow to solve this summation derived from an algorithm?M/G/1 queue: difference between $p_o$ and $p(0)$?How to find closed form of summationProof of identity about generalized binomial sequences.

How easy is it to start Magic from scratch?

How do I extract a value from a time formatted value in excel?

How did Arya survive the stabbing?

Pole-zeros of a real-valued causal FIR system

What does 算不上 mean in 算不上太美好的日子?

Replace character with another only if repeated and not part of a word

Why does indent disappear in lists?

Applicability of Single Responsibility Principle

Increase performance creating Mandelbrot set in python

Avoiding estate tax by giving multiple gifts

How does the UK government determine the size of a mandate?

Short story about space worker geeks who zone out by 'listening' to radiation from stars

How to Reset Passwords on Multiple Websites Easily?

Customer Requests (Sometimes) Drive Me Bonkers!

Would a high gravity rocky planet be guaranteed to have an atmosphere?

What is paid subscription needed for in Mortal Kombat 11?

Can the discrete variable be a negative number?

How do we know the LHC results are robust?

What happens if you roll doubles 3 times then land on "Go to jail?"

What is the difference between "behavior" and "behaviour"?

Failed to fetch jessie backports repository

Roman Numeral Treatment of Suspensions

What is the intuitive meaning of having a linear relationship between the logs of two variables?

Term for the "extreme-extension" version of a straw man fallacy?



Find n from summation


Find the original function in a summationSummation of $i cdot j$ from $ 1$ to$ 3$Evaluating Summation of $5^-n$ from $n=4$ to infinityExtract a variable from the following summationCalculating summation on integer numbers from $-infty$ to $infty$Order of growth from summationHow to solve this summation derived from an algorithm?M/G/1 queue: difference between $p_o$ and $p(0)$?How to find closed form of summationProof of identity about generalized binomial sequences.













1












$begingroup$


I ran into this expression while reading through a chapter a book:



$$sum_i=0^nfrace^-15001500^ii! ge 0.95$$



And they solve for $n$ and got $n = 1564$ from the expression, but there's no detail on how to get $n$. Can someone explain how to get that number for $n$?



The book is Discrete Event System Simulation by Jerry Banks. This is in the 5th Edition, Chapter 6 Example 6.15, if anyone wants to look this up.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Is it possible the author used Mathematica (or some other mathematical software) to determine $n$? I can offer one or two techniques to solve for some such $n$, but I'm not sure anything is quite as tight as $n=1564$.
    $endgroup$
    – Clayton
    yesterday










  • $begingroup$
    That might have been the case. I tried to crunch this in wolfram alpha and couldn't get the answer.
    $endgroup$
    – PTN
    yesterday






  • 3




    $begingroup$
    The Poisson probability distribution for a mean of 1500 will be approximately a normal distribution. The probability to be 1.64485 sigma above the mean is 5% for a normal distribution, therefore you would roughly estimate n to be $1500 + 1.64485 sqrt1500approx 1564$
    $endgroup$
    – Count Iblis
    yesterday











  • $begingroup$
    @CountIblis That makes sense!
    $endgroup$
    – PTN
    yesterday















1












$begingroup$


I ran into this expression while reading through a chapter a book:



$$sum_i=0^nfrace^-15001500^ii! ge 0.95$$



And they solve for $n$ and got $n = 1564$ from the expression, but there's no detail on how to get $n$. Can someone explain how to get that number for $n$?



The book is Discrete Event System Simulation by Jerry Banks. This is in the 5th Edition, Chapter 6 Example 6.15, if anyone wants to look this up.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Is it possible the author used Mathematica (or some other mathematical software) to determine $n$? I can offer one or two techniques to solve for some such $n$, but I'm not sure anything is quite as tight as $n=1564$.
    $endgroup$
    – Clayton
    yesterday










  • $begingroup$
    That might have been the case. I tried to crunch this in wolfram alpha and couldn't get the answer.
    $endgroup$
    – PTN
    yesterday






  • 3




    $begingroup$
    The Poisson probability distribution for a mean of 1500 will be approximately a normal distribution. The probability to be 1.64485 sigma above the mean is 5% for a normal distribution, therefore you would roughly estimate n to be $1500 + 1.64485 sqrt1500approx 1564$
    $endgroup$
    – Count Iblis
    yesterday











  • $begingroup$
    @CountIblis That makes sense!
    $endgroup$
    – PTN
    yesterday













1












1








1





$begingroup$


I ran into this expression while reading through a chapter a book:



$$sum_i=0^nfrace^-15001500^ii! ge 0.95$$



And they solve for $n$ and got $n = 1564$ from the expression, but there's no detail on how to get $n$. Can someone explain how to get that number for $n$?



The book is Discrete Event System Simulation by Jerry Banks. This is in the 5th Edition, Chapter 6 Example 6.15, if anyone wants to look this up.










share|cite|improve this question











$endgroup$




I ran into this expression while reading through a chapter a book:



$$sum_i=0^nfrace^-15001500^ii! ge 0.95$$



And they solve for $n$ and got $n = 1564$ from the expression, but there's no detail on how to get $n$. Can someone explain how to get that number for $n$?



The book is Discrete Event System Simulation by Jerry Banks. This is in the 5th Edition, Chapter 6 Example 6.15, if anyone wants to look this up.







summation poisson-distribution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







PTN

















asked yesterday









PTNPTN

1496




1496











  • $begingroup$
    Is it possible the author used Mathematica (or some other mathematical software) to determine $n$? I can offer one or two techniques to solve for some such $n$, but I'm not sure anything is quite as tight as $n=1564$.
    $endgroup$
    – Clayton
    yesterday










  • $begingroup$
    That might have been the case. I tried to crunch this in wolfram alpha and couldn't get the answer.
    $endgroup$
    – PTN
    yesterday






  • 3




    $begingroup$
    The Poisson probability distribution for a mean of 1500 will be approximately a normal distribution. The probability to be 1.64485 sigma above the mean is 5% for a normal distribution, therefore you would roughly estimate n to be $1500 + 1.64485 sqrt1500approx 1564$
    $endgroup$
    – Count Iblis
    yesterday











  • $begingroup$
    @CountIblis That makes sense!
    $endgroup$
    – PTN
    yesterday
















  • $begingroup$
    Is it possible the author used Mathematica (or some other mathematical software) to determine $n$? I can offer one or two techniques to solve for some such $n$, but I'm not sure anything is quite as tight as $n=1564$.
    $endgroup$
    – Clayton
    yesterday










  • $begingroup$
    That might have been the case. I tried to crunch this in wolfram alpha and couldn't get the answer.
    $endgroup$
    – PTN
    yesterday






  • 3




    $begingroup$
    The Poisson probability distribution for a mean of 1500 will be approximately a normal distribution. The probability to be 1.64485 sigma above the mean is 5% for a normal distribution, therefore you would roughly estimate n to be $1500 + 1.64485 sqrt1500approx 1564$
    $endgroup$
    – Count Iblis
    yesterday











  • $begingroup$
    @CountIblis That makes sense!
    $endgroup$
    – PTN
    yesterday















$begingroup$
Is it possible the author used Mathematica (or some other mathematical software) to determine $n$? I can offer one or two techniques to solve for some such $n$, but I'm not sure anything is quite as tight as $n=1564$.
$endgroup$
– Clayton
yesterday




$begingroup$
Is it possible the author used Mathematica (or some other mathematical software) to determine $n$? I can offer one or two techniques to solve for some such $n$, but I'm not sure anything is quite as tight as $n=1564$.
$endgroup$
– Clayton
yesterday












$begingroup$
That might have been the case. I tried to crunch this in wolfram alpha and couldn't get the answer.
$endgroup$
– PTN
yesterday




$begingroup$
That might have been the case. I tried to crunch this in wolfram alpha and couldn't get the answer.
$endgroup$
– PTN
yesterday




3




3




$begingroup$
The Poisson probability distribution for a mean of 1500 will be approximately a normal distribution. The probability to be 1.64485 sigma above the mean is 5% for a normal distribution, therefore you would roughly estimate n to be $1500 + 1.64485 sqrt1500approx 1564$
$endgroup$
– Count Iblis
yesterday





$begingroup$
The Poisson probability distribution for a mean of 1500 will be approximately a normal distribution. The probability to be 1.64485 sigma above the mean is 5% for a normal distribution, therefore you would roughly estimate n to be $1500 + 1.64485 sqrt1500approx 1564$
$endgroup$
– Count Iblis
yesterday













$begingroup$
@CountIblis That makes sense!
$endgroup$
– PTN
yesterday




$begingroup$
@CountIblis That makes sense!
$endgroup$
– PTN
yesterday










2 Answers
2






active

oldest

votes


















2












$begingroup$

The probability distribution is the Poisson distribution with $lambda=1500$. For large $lambda$ the distribution is approximately normal with mean $lambda$ and variance $lambda$, so standard deviation $sigma=sqrt lambda$. For a one-sided normal distribution you have $5%$ of the area above mean + $1.648 sigma$, which here is $1500+1.648 sqrt 1500 approx 1564$






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    From a purely algebraic point of view
    $$sum_i=0^nfrace^-15001500^ii! =fracGamma (n+1,1500)Gamma (n+1)$$ So, you could consider that we look for the zero of function
    $$f(x)=fracGamma (x+1,1500)Gamma (x+1)-0.95$$ which is not very well conditioned. Better will be to search for the zero of
    $$g(x)=log left(fracGamma (x+1,1500)Gamma (x+1)right)-log(0.95)$$ Remembering that
    $fracGamma (m,m)Gamma (m) < frac 12$, let us use Newton method with $x_0=1500$. Since $g(x_0) <0$ and $g''(x_0) <0$, by Darboux theorem, we shall not face any overshoot of the solution which is $x=1563.485020$.



    Just for the fun of it, ask Wolfram Alpha to plot $g(x)$ for $1500 leq x leq 1600$.






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164037%2ffind-n-from-summation%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The probability distribution is the Poisson distribution with $lambda=1500$. For large $lambda$ the distribution is approximately normal with mean $lambda$ and variance $lambda$, so standard deviation $sigma=sqrt lambda$. For a one-sided normal distribution you have $5%$ of the area above mean + $1.648 sigma$, which here is $1500+1.648 sqrt 1500 approx 1564$






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        The probability distribution is the Poisson distribution with $lambda=1500$. For large $lambda$ the distribution is approximately normal with mean $lambda$ and variance $lambda$, so standard deviation $sigma=sqrt lambda$. For a one-sided normal distribution you have $5%$ of the area above mean + $1.648 sigma$, which here is $1500+1.648 sqrt 1500 approx 1564$






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          The probability distribution is the Poisson distribution with $lambda=1500$. For large $lambda$ the distribution is approximately normal with mean $lambda$ and variance $lambda$, so standard deviation $sigma=sqrt lambda$. For a one-sided normal distribution you have $5%$ of the area above mean + $1.648 sigma$, which here is $1500+1.648 sqrt 1500 approx 1564$






          share|cite|improve this answer









          $endgroup$



          The probability distribution is the Poisson distribution with $lambda=1500$. For large $lambda$ the distribution is approximately normal with mean $lambda$ and variance $lambda$, so standard deviation $sigma=sqrt lambda$. For a one-sided normal distribution you have $5%$ of the area above mean + $1.648 sigma$, which here is $1500+1.648 sqrt 1500 approx 1564$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Ross MillikanRoss Millikan

          300k24200375




          300k24200375





















              1












              $begingroup$

              From a purely algebraic point of view
              $$sum_i=0^nfrace^-15001500^ii! =fracGamma (n+1,1500)Gamma (n+1)$$ So, you could consider that we look for the zero of function
              $$f(x)=fracGamma (x+1,1500)Gamma (x+1)-0.95$$ which is not very well conditioned. Better will be to search for the zero of
              $$g(x)=log left(fracGamma (x+1,1500)Gamma (x+1)right)-log(0.95)$$ Remembering that
              $fracGamma (m,m)Gamma (m) < frac 12$, let us use Newton method with $x_0=1500$. Since $g(x_0) <0$ and $g''(x_0) <0$, by Darboux theorem, we shall not face any overshoot of the solution which is $x=1563.485020$.



              Just for the fun of it, ask Wolfram Alpha to plot $g(x)$ for $1500 leq x leq 1600$.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                From a purely algebraic point of view
                $$sum_i=0^nfrace^-15001500^ii! =fracGamma (n+1,1500)Gamma (n+1)$$ So, you could consider that we look for the zero of function
                $$f(x)=fracGamma (x+1,1500)Gamma (x+1)-0.95$$ which is not very well conditioned. Better will be to search for the zero of
                $$g(x)=log left(fracGamma (x+1,1500)Gamma (x+1)right)-log(0.95)$$ Remembering that
                $fracGamma (m,m)Gamma (m) < frac 12$, let us use Newton method with $x_0=1500$. Since $g(x_0) <0$ and $g''(x_0) <0$, by Darboux theorem, we shall not face any overshoot of the solution which is $x=1563.485020$.



                Just for the fun of it, ask Wolfram Alpha to plot $g(x)$ for $1500 leq x leq 1600$.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  From a purely algebraic point of view
                  $$sum_i=0^nfrace^-15001500^ii! =fracGamma (n+1,1500)Gamma (n+1)$$ So, you could consider that we look for the zero of function
                  $$f(x)=fracGamma (x+1,1500)Gamma (x+1)-0.95$$ which is not very well conditioned. Better will be to search for the zero of
                  $$g(x)=log left(fracGamma (x+1,1500)Gamma (x+1)right)-log(0.95)$$ Remembering that
                  $fracGamma (m,m)Gamma (m) < frac 12$, let us use Newton method with $x_0=1500$. Since $g(x_0) <0$ and $g''(x_0) <0$, by Darboux theorem, we shall not face any overshoot of the solution which is $x=1563.485020$.



                  Just for the fun of it, ask Wolfram Alpha to plot $g(x)$ for $1500 leq x leq 1600$.






                  share|cite|improve this answer









                  $endgroup$



                  From a purely algebraic point of view
                  $$sum_i=0^nfrace^-15001500^ii! =fracGamma (n+1,1500)Gamma (n+1)$$ So, you could consider that we look for the zero of function
                  $$f(x)=fracGamma (x+1,1500)Gamma (x+1)-0.95$$ which is not very well conditioned. Better will be to search for the zero of
                  $$g(x)=log left(fracGamma (x+1,1500)Gamma (x+1)right)-log(0.95)$$ Remembering that
                  $fracGamma (m,m)Gamma (m) < frac 12$, let us use Newton method with $x_0=1500$. Since $g(x_0) <0$ and $g''(x_0) <0$, by Darboux theorem, we shall not face any overshoot of the solution which is $x=1563.485020$.



                  Just for the fun of it, ask Wolfram Alpha to plot $g(x)$ for $1500 leq x leq 1600$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 21 hours ago









                  Claude LeiboviciClaude Leibovici

                  125k1158135




                  125k1158135



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164037%2ffind-n-from-summation%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu