Will the span of vectors (1,0,0,0,0),(0,1,0,0,0) form a subspace/basis in the set of fields of dimension 5?What is the dimension of the subspace of $P_2 $ given by span $2 + x^2, 4-2x+3x^2, 1+x?$Span and Dimension: A subspaceIs the set a basis for the SubspaceIs $span(v_1, . . . ,v_m)$ a linearly dependent or linearly independent set of vectors? Also, what will happen if we take span of span?Dimension of Basis of SubspaceProve that centering vectors reduces the span by 1 dimensionQuestion on whether certain vectors span a subspaceBasis and vectors spanHow is dimension of a span of a set of vectors related to the number of vectors in the set?Exercise to determine the subspace of $mathbb R^4$ that these 4 vectors span

What is the most common color to indicate the input-field is disabled?

How to remove border from elements in the last row?

Different meanings of こわい

Does Dispel Magic work on Tiny Hut?

Can a virus destroy the BIOS of a modern computer?

In the UK, is it possible to get a referendum by a court decision?

Mathematica command that allows it to read my intentions

How to stretch the corners of this image so that it looks like a perfect rectangle?

How to show a landlord what we have in savings?

What is the fastest integer factorization to break RSA?

What historical events would have to change in order to make 19th century "steampunk" technology possible?

Does the Cone of Cold spell freeze water?

Is this draw by repetition?

Is there a hemisphere-neutral way of specifying a season?

How do conventional missiles fly?

How to install cross-compiler on Ubuntu 18.04?

Does the Idaho Potato Commission associate potato skins with healthy eating?

In Bayesian inference, why are some terms dropped from the posterior predictive?

Is it a bad idea to plug the other end of ESD strap to wall ground?

What does the same-ish mean?

Forgetting the musical notes while performing in concert

How dangerous is XSS

How to find if SQL server backup is encrypted with TDE without restoring the backup

Could the museum Saturn V's be refitted for one more flight?



Will the span of vectors (1,0,0,0,0),(0,1,0,0,0) form a subspace/basis in the set of fields of dimension 5?


What is the dimension of the subspace of $P_2 $ given by span $2 + x^2, 4-2x+3x^2, 1+x?$Span and Dimension: A subspaceIs the set a basis for the SubspaceIs $span(v_1, . . . ,v_m)$ a linearly dependent or linearly independent set of vectors? Also, what will happen if we take span of span?Dimension of Basis of SubspaceProve that centering vectors reduces the span by 1 dimensionQuestion on whether certain vectors span a subspaceBasis and vectors spanHow is dimension of a span of a set of vectors related to the number of vectors in the set?Exercise to determine the subspace of $mathbb R^4$ that these 4 vectors span













0












$begingroup$


I have checked a calculator website which checks if a set of vectors is a basis and the one that I put in the title is not. (http://www.mathforyou.net/en/online/vectors/basis/)



By the subspace definition, the vector 0 is contained into the span, 0*(1,0,0,0,0)+0*(0,1,0,0,0), and we can get any other vector from the span with just the independent vectors (1,0,0,0,0) and (0,1,0,0,0) and this span must be a subspace and basis too.



Please tell me if I m doing anything wrong or I misunderstand any concept.










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    I have checked a calculator website which checks if a set of vectors is a basis and the one that I put in the title is not. (http://www.mathforyou.net/en/online/vectors/basis/)



    By the subspace definition, the vector 0 is contained into the span, 0*(1,0,0,0,0)+0*(0,1,0,0,0), and we can get any other vector from the span with just the independent vectors (1,0,0,0,0) and (0,1,0,0,0) and this span must be a subspace and basis too.



    Please tell me if I m doing anything wrong or I misunderstand any concept.










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      I have checked a calculator website which checks if a set of vectors is a basis and the one that I put in the title is not. (http://www.mathforyou.net/en/online/vectors/basis/)



      By the subspace definition, the vector 0 is contained into the span, 0*(1,0,0,0,0)+0*(0,1,0,0,0), and we can get any other vector from the span with just the independent vectors (1,0,0,0,0) and (0,1,0,0,0) and this span must be a subspace and basis too.



      Please tell me if I m doing anything wrong or I misunderstand any concept.










      share|cite|improve this question











      $endgroup$




      I have checked a calculator website which checks if a set of vectors is a basis and the one that I put in the title is not. (http://www.mathforyou.net/en/online/vectors/basis/)



      By the subspace definition, the vector 0 is contained into the span, 0*(1,0,0,0,0)+0*(0,1,0,0,0), and we can get any other vector from the span with just the independent vectors (1,0,0,0,0) and (0,1,0,0,0) and this span must be a subspace and basis too.



      Please tell me if I m doing anything wrong or I misunderstand any concept.







      linear-algebra hamel-basis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 28 at 16:19









      J. W. Tanner

      4,2661320




      4,2661320










      asked Mar 28 at 15:59









      ValVal

      557




      557




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The span of those vectors is indeed a subspace of dimension $2$ of $mathbb R^5$, whose dimension is $5$. So, those two vectors do not form a basis of $mathbb R^5$. That's all.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
            $endgroup$
            – Val
            Mar 28 at 16:14










          • $begingroup$
            No. It is wrong. The vectors form a basis, but their span is not a basis.
            $endgroup$
            – José Carlos Santos
            Mar 28 at 16:15










          • $begingroup$
            @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
            $endgroup$
            – Val
            Mar 28 at 16:19






          • 2




            $begingroup$
            The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
            $endgroup$
            – Oscar
            Mar 28 at 16:19










          • $begingroup$
            Oh ok thank you I understand it now!
            $endgroup$
            – Val
            Mar 28 at 16:20











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166087%2fwill-the-span-of-vectors-1-0-0-0-0-0-1-0-0-0-form-a-subspace-basis-in-the%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          The span of those vectors is indeed a subspace of dimension $2$ of $mathbb R^5$, whose dimension is $5$. So, those two vectors do not form a basis of $mathbb R^5$. That's all.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
            $endgroup$
            – Val
            Mar 28 at 16:14










          • $begingroup$
            No. It is wrong. The vectors form a basis, but their span is not a basis.
            $endgroup$
            – José Carlos Santos
            Mar 28 at 16:15










          • $begingroup$
            @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
            $endgroup$
            – Val
            Mar 28 at 16:19






          • 2




            $begingroup$
            The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
            $endgroup$
            – Oscar
            Mar 28 at 16:19










          • $begingroup$
            Oh ok thank you I understand it now!
            $endgroup$
            – Val
            Mar 28 at 16:20















          1












          $begingroup$

          The span of those vectors is indeed a subspace of dimension $2$ of $mathbb R^5$, whose dimension is $5$. So, those two vectors do not form a basis of $mathbb R^5$. That's all.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
            $endgroup$
            – Val
            Mar 28 at 16:14










          • $begingroup$
            No. It is wrong. The vectors form a basis, but their span is not a basis.
            $endgroup$
            – José Carlos Santos
            Mar 28 at 16:15










          • $begingroup$
            @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
            $endgroup$
            – Val
            Mar 28 at 16:19






          • 2




            $begingroup$
            The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
            $endgroup$
            – Oscar
            Mar 28 at 16:19










          • $begingroup$
            Oh ok thank you I understand it now!
            $endgroup$
            – Val
            Mar 28 at 16:20













          1












          1








          1





          $begingroup$

          The span of those vectors is indeed a subspace of dimension $2$ of $mathbb R^5$, whose dimension is $5$. So, those two vectors do not form a basis of $mathbb R^5$. That's all.






          share|cite|improve this answer









          $endgroup$



          The span of those vectors is indeed a subspace of dimension $2$ of $mathbb R^5$, whose dimension is $5$. So, those two vectors do not form a basis of $mathbb R^5$. That's all.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 28 at 16:02









          José Carlos SantosJosé Carlos Santos

          172k23132240




          172k23132240











          • $begingroup$
            @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
            $endgroup$
            – Val
            Mar 28 at 16:14










          • $begingroup$
            No. It is wrong. The vectors form a basis, but their span is not a basis.
            $endgroup$
            – José Carlos Santos
            Mar 28 at 16:15










          • $begingroup$
            @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
            $endgroup$
            – Val
            Mar 28 at 16:19






          • 2




            $begingroup$
            The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
            $endgroup$
            – Oscar
            Mar 28 at 16:19










          • $begingroup$
            Oh ok thank you I understand it now!
            $endgroup$
            – Val
            Mar 28 at 16:20
















          • $begingroup$
            @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
            $endgroup$
            – Val
            Mar 28 at 16:14










          • $begingroup$
            No. It is wrong. The vectors form a basis, but their span is not a basis.
            $endgroup$
            – José Carlos Santos
            Mar 28 at 16:15










          • $begingroup$
            @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
            $endgroup$
            – Val
            Mar 28 at 16:19






          • 2




            $begingroup$
            The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
            $endgroup$
            – Oscar
            Mar 28 at 16:19










          • $begingroup$
            Oh ok thank you I understand it now!
            $endgroup$
            – Val
            Mar 28 at 16:20















          $begingroup$
          @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
          $endgroup$
          – Val
          Mar 28 at 16:14




          $begingroup$
          @Santos Yes they do not form a basis of $mathbb R^5$, but the span is itself a basis. Is that statement right?
          $endgroup$
          – Val
          Mar 28 at 16:14












          $begingroup$
          No. It is wrong. The vectors form a basis, but their span is not a basis.
          $endgroup$
          – José Carlos Santos
          Mar 28 at 16:15




          $begingroup$
          No. It is wrong. The vectors form a basis, but their span is not a basis.
          $endgroup$
          – José Carlos Santos
          Mar 28 at 16:15












          $begingroup$
          @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
          $endgroup$
          – Val
          Mar 28 at 16:19




          $begingroup$
          @Santos But the vectors are independent and they span the subspace, why wouldn't they be a basis. Could you please give me the basis of this span then?
          $endgroup$
          – Val
          Mar 28 at 16:19




          2




          2




          $begingroup$
          The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
          $endgroup$
          – Oscar
          Mar 28 at 16:19




          $begingroup$
          The correct definition of a basis is a set of vectors that span the whole space and it is a maximal set of linearly independent vectors. Your example is a set of linearly independent vectors (not maximal), and it does not span the whole space.
          $endgroup$
          – Oscar
          Mar 28 at 16:19












          $begingroup$
          Oh ok thank you I understand it now!
          $endgroup$
          – Val
          Mar 28 at 16:20




          $begingroup$
          Oh ok thank you I understand it now!
          $endgroup$
          – Val
          Mar 28 at 16:20

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166087%2fwill-the-span-of-vectors-1-0-0-0-0-0-1-0-0-0-form-a-subspace-basis-in-the%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu