Ring Theoretical Method of Solving a Math Olympiad ProblemMath Olympiad problemCzech Republic Math Olympiad 2008 Problemquestion from russian math olympiadMath Olympiad Algebraic QuestionMath Olympiad Divisor ProblemMath Olympiad Perfect Square QuestionMath Olympiad Algebra QuestionDouble Integral Math Olympiad ProblemMath Olympiad Question- ProofMath Olympiad Problem regarding sum of digits.

OP Amp not amplifying audio signal

What Exploit Are These User Agents Trying to Use?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

How to remove border from elements in the last row?

How to travel to Japan while expressing milk?

My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?

Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?

How badly should I try to prevent a user from XSSing themselves?

Ambiguity in the definition of entropy

Why didn't Boeing produce its own regional jet?

how do we prove that a sum of two periods is still a period?

Is it inappropriate for a student to attend their mentor's dissertation defense?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

How can saying a song's name be a copyright violation?

Does Dispel Magic work on Tiny Hut?

Placement of More Information/Help Icon button for Radio Buttons

Unlock My Phone! February 2018

ssTTsSTtRrriinInnnnNNNIiinngg

What is the most common color to indicate the input-field is disabled?

How could indestructible materials be used in power generation?

Knowledge-based authentication using Domain-driven Design in C#

Description list Formatting using enumitem

Can someone clarify Hamming's notion of important problems in relation to modern academia?

Was the old ablative pronoun "med" or "mēd"?



Ring Theoretical Method of Solving a Math Olympiad Problem


Math Olympiad problemCzech Republic Math Olympiad 2008 Problemquestion from russian math olympiadMath Olympiad Algebraic QuestionMath Olympiad Divisor ProblemMath Olympiad Perfect Square QuestionMath Olympiad Algebra QuestionDouble Integral Math Olympiad ProblemMath Olympiad Question- ProofMath Olympiad Problem regarding sum of digits.













1












$begingroup$


These paragraphs are from Steve Olson's book Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition.



On page 170, the author said:




The sixth and last problem on the Forty-second Olympiad ---
by tradition the hardest of all --- looked deceptively straightforward to the competitors.



Let $a > b > c> d$ be positive integers and suppose that $ac +bd =(b + d + a -c)(b + d -a + c)$. Prove that $ab + cd$ is not
prime.




On page 174:




Gabriel's answer to problem six demonstrated his power as a
mathematician. "Gabe's solution was overkill," says Stankova,
"but he solved the problem the way a mathematician would solve it." In his solution he used a mathematical idea called a ring --- a set of mathematical objects, any two of which can be added or multiplied to yield another member of the set.




Edit
On page 210:




Gabriel's use of imaginary numbers in problem six was directly linked to the famous equation $e^pi i = -1$. The number omega ($omega$)
is defined as $omega = e^2pi i/3$. So $omega^2 = e^2pi i/3times e^2pi i/3=e^2pi i/3+2pi i/3=e^4pi i/3$ (because the exponents of $e$ can be added together when the two numbers are multiplied). By the same token, $omega^3 =e^6pi i/3=e^2pi i=e^pi itimes e^pi i= -1 times -1 = 1$.
Thus the set of numbers $1, -1, omega, -omega, omega^2$, and $-w^2$ are related in a particular way. If you multiply any two of them together, you get another member of the set. Gabriel used the powerful properties of this group to crack problem six.




The original problem: https://www.imo-official.org/problems.aspx (2001)



My Question: How did he solve the problem in a ring theoretical method?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The way that text is written is ... cringeworthy at best. Honestly, with problems like these, any methods that use ring properties can also be solved with the equivalent integer manipulations. I don't know what the author is getting at.
    $endgroup$
    – Don Thousand
    Mar 28 at 16:33











  • $begingroup$
    Maybe just working with $(a+c)(b+d)pmod ab+cd$? I didn't work it out.
    $endgroup$
    – rschwieb
    Mar 28 at 16:43











  • $begingroup$
    Also $(a-c)(b-d)$ might be important, because if $ab+cd$ is assumed to be prime, it is associate to the other product I mentioned in the quotient ring.
    $endgroup$
    – rschwieb
    Mar 28 at 16:51











  • $begingroup$
    Sorry. I forgot to quote a paragraph. I have made it. It seems to use group theory.
    $endgroup$
    – bfhaha
    Mar 28 at 16:59










  • $begingroup$
    Af first glance, it seems to hint at employing the ring of Eisenstein integers. And a quick glance at an AoPS solution shows (unmotivated) integer calculations involving obvious Eisenstein integer norms, so it should be straightforward to reformulate that more naturally in Eisenstein arithmetic. Likely that is the "ring theoretic" solution implied in the book.
    $endgroup$
    – Bill Dubuque
    Mar 28 at 18:33
















1












$begingroup$


These paragraphs are from Steve Olson's book Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition.



On page 170, the author said:




The sixth and last problem on the Forty-second Olympiad ---
by tradition the hardest of all --- looked deceptively straightforward to the competitors.



Let $a > b > c> d$ be positive integers and suppose that $ac +bd =(b + d + a -c)(b + d -a + c)$. Prove that $ab + cd$ is not
prime.




On page 174:




Gabriel's answer to problem six demonstrated his power as a
mathematician. "Gabe's solution was overkill," says Stankova,
"but he solved the problem the way a mathematician would solve it." In his solution he used a mathematical idea called a ring --- a set of mathematical objects, any two of which can be added or multiplied to yield another member of the set.




Edit
On page 210:




Gabriel's use of imaginary numbers in problem six was directly linked to the famous equation $e^pi i = -1$. The number omega ($omega$)
is defined as $omega = e^2pi i/3$. So $omega^2 = e^2pi i/3times e^2pi i/3=e^2pi i/3+2pi i/3=e^4pi i/3$ (because the exponents of $e$ can be added together when the two numbers are multiplied). By the same token, $omega^3 =e^6pi i/3=e^2pi i=e^pi itimes e^pi i= -1 times -1 = 1$.
Thus the set of numbers $1, -1, omega, -omega, omega^2$, and $-w^2$ are related in a particular way. If you multiply any two of them together, you get another member of the set. Gabriel used the powerful properties of this group to crack problem six.




The original problem: https://www.imo-official.org/problems.aspx (2001)



My Question: How did he solve the problem in a ring theoretical method?










share|cite|improve this question











$endgroup$











  • $begingroup$
    The way that text is written is ... cringeworthy at best. Honestly, with problems like these, any methods that use ring properties can also be solved with the equivalent integer manipulations. I don't know what the author is getting at.
    $endgroup$
    – Don Thousand
    Mar 28 at 16:33











  • $begingroup$
    Maybe just working with $(a+c)(b+d)pmod ab+cd$? I didn't work it out.
    $endgroup$
    – rschwieb
    Mar 28 at 16:43











  • $begingroup$
    Also $(a-c)(b-d)$ might be important, because if $ab+cd$ is assumed to be prime, it is associate to the other product I mentioned in the quotient ring.
    $endgroup$
    – rschwieb
    Mar 28 at 16:51











  • $begingroup$
    Sorry. I forgot to quote a paragraph. I have made it. It seems to use group theory.
    $endgroup$
    – bfhaha
    Mar 28 at 16:59










  • $begingroup$
    Af first glance, it seems to hint at employing the ring of Eisenstein integers. And a quick glance at an AoPS solution shows (unmotivated) integer calculations involving obvious Eisenstein integer norms, so it should be straightforward to reformulate that more naturally in Eisenstein arithmetic. Likely that is the "ring theoretic" solution implied in the book.
    $endgroup$
    – Bill Dubuque
    Mar 28 at 18:33














1












1








1


2



$begingroup$


These paragraphs are from Steve Olson's book Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition.



On page 170, the author said:




The sixth and last problem on the Forty-second Olympiad ---
by tradition the hardest of all --- looked deceptively straightforward to the competitors.



Let $a > b > c> d$ be positive integers and suppose that $ac +bd =(b + d + a -c)(b + d -a + c)$. Prove that $ab + cd$ is not
prime.




On page 174:




Gabriel's answer to problem six demonstrated his power as a
mathematician. "Gabe's solution was overkill," says Stankova,
"but he solved the problem the way a mathematician would solve it." In his solution he used a mathematical idea called a ring --- a set of mathematical objects, any two of which can be added or multiplied to yield another member of the set.




Edit
On page 210:




Gabriel's use of imaginary numbers in problem six was directly linked to the famous equation $e^pi i = -1$. The number omega ($omega$)
is defined as $omega = e^2pi i/3$. So $omega^2 = e^2pi i/3times e^2pi i/3=e^2pi i/3+2pi i/3=e^4pi i/3$ (because the exponents of $e$ can be added together when the two numbers are multiplied). By the same token, $omega^3 =e^6pi i/3=e^2pi i=e^pi itimes e^pi i= -1 times -1 = 1$.
Thus the set of numbers $1, -1, omega, -omega, omega^2$, and $-w^2$ are related in a particular way. If you multiply any two of them together, you get another member of the set. Gabriel used the powerful properties of this group to crack problem six.




The original problem: https://www.imo-official.org/problems.aspx (2001)



My Question: How did he solve the problem in a ring theoretical method?










share|cite|improve this question











$endgroup$




These paragraphs are from Steve Olson's book Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition.



On page 170, the author said:




The sixth and last problem on the Forty-second Olympiad ---
by tradition the hardest of all --- looked deceptively straightforward to the competitors.



Let $a > b > c> d$ be positive integers and suppose that $ac +bd =(b + d + a -c)(b + d -a + c)$. Prove that $ab + cd$ is not
prime.




On page 174:




Gabriel's answer to problem six demonstrated his power as a
mathematician. "Gabe's solution was overkill," says Stankova,
"but he solved the problem the way a mathematician would solve it." In his solution he used a mathematical idea called a ring --- a set of mathematical objects, any two of which can be added or multiplied to yield another member of the set.




Edit
On page 210:




Gabriel's use of imaginary numbers in problem six was directly linked to the famous equation $e^pi i = -1$. The number omega ($omega$)
is defined as $omega = e^2pi i/3$. So $omega^2 = e^2pi i/3times e^2pi i/3=e^2pi i/3+2pi i/3=e^4pi i/3$ (because the exponents of $e$ can be added together when the two numbers are multiplied). By the same token, $omega^3 =e^6pi i/3=e^2pi i=e^pi itimes e^pi i= -1 times -1 = 1$.
Thus the set of numbers $1, -1, omega, -omega, omega^2$, and $-w^2$ are related in a particular way. If you multiply any two of them together, you get another member of the set. Gabriel used the powerful properties of this group to crack problem six.




The original problem: https://www.imo-official.org/problems.aspx (2001)



My Question: How did he solve the problem in a ring theoretical method?







ring-theory contest-math






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 28 at 17:02







bfhaha

















asked Mar 28 at 16:23









bfhahabfhaha

1,5751125




1,5751125











  • $begingroup$
    The way that text is written is ... cringeworthy at best. Honestly, with problems like these, any methods that use ring properties can also be solved with the equivalent integer manipulations. I don't know what the author is getting at.
    $endgroup$
    – Don Thousand
    Mar 28 at 16:33











  • $begingroup$
    Maybe just working with $(a+c)(b+d)pmod ab+cd$? I didn't work it out.
    $endgroup$
    – rschwieb
    Mar 28 at 16:43











  • $begingroup$
    Also $(a-c)(b-d)$ might be important, because if $ab+cd$ is assumed to be prime, it is associate to the other product I mentioned in the quotient ring.
    $endgroup$
    – rschwieb
    Mar 28 at 16:51











  • $begingroup$
    Sorry. I forgot to quote a paragraph. I have made it. It seems to use group theory.
    $endgroup$
    – bfhaha
    Mar 28 at 16:59










  • $begingroup$
    Af first glance, it seems to hint at employing the ring of Eisenstein integers. And a quick glance at an AoPS solution shows (unmotivated) integer calculations involving obvious Eisenstein integer norms, so it should be straightforward to reformulate that more naturally in Eisenstein arithmetic. Likely that is the "ring theoretic" solution implied in the book.
    $endgroup$
    – Bill Dubuque
    Mar 28 at 18:33

















  • $begingroup$
    The way that text is written is ... cringeworthy at best. Honestly, with problems like these, any methods that use ring properties can also be solved with the equivalent integer manipulations. I don't know what the author is getting at.
    $endgroup$
    – Don Thousand
    Mar 28 at 16:33











  • $begingroup$
    Maybe just working with $(a+c)(b+d)pmod ab+cd$? I didn't work it out.
    $endgroup$
    – rschwieb
    Mar 28 at 16:43











  • $begingroup$
    Also $(a-c)(b-d)$ might be important, because if $ab+cd$ is assumed to be prime, it is associate to the other product I mentioned in the quotient ring.
    $endgroup$
    – rschwieb
    Mar 28 at 16:51











  • $begingroup$
    Sorry. I forgot to quote a paragraph. I have made it. It seems to use group theory.
    $endgroup$
    – bfhaha
    Mar 28 at 16:59










  • $begingroup$
    Af first glance, it seems to hint at employing the ring of Eisenstein integers. And a quick glance at an AoPS solution shows (unmotivated) integer calculations involving obvious Eisenstein integer norms, so it should be straightforward to reformulate that more naturally in Eisenstein arithmetic. Likely that is the "ring theoretic" solution implied in the book.
    $endgroup$
    – Bill Dubuque
    Mar 28 at 18:33
















$begingroup$
The way that text is written is ... cringeworthy at best. Honestly, with problems like these, any methods that use ring properties can also be solved with the equivalent integer manipulations. I don't know what the author is getting at.
$endgroup$
– Don Thousand
Mar 28 at 16:33





$begingroup$
The way that text is written is ... cringeworthy at best. Honestly, with problems like these, any methods that use ring properties can also be solved with the equivalent integer manipulations. I don't know what the author is getting at.
$endgroup$
– Don Thousand
Mar 28 at 16:33













$begingroup$
Maybe just working with $(a+c)(b+d)pmod ab+cd$? I didn't work it out.
$endgroup$
– rschwieb
Mar 28 at 16:43





$begingroup$
Maybe just working with $(a+c)(b+d)pmod ab+cd$? I didn't work it out.
$endgroup$
– rschwieb
Mar 28 at 16:43













$begingroup$
Also $(a-c)(b-d)$ might be important, because if $ab+cd$ is assumed to be prime, it is associate to the other product I mentioned in the quotient ring.
$endgroup$
– rschwieb
Mar 28 at 16:51





$begingroup$
Also $(a-c)(b-d)$ might be important, because if $ab+cd$ is assumed to be prime, it is associate to the other product I mentioned in the quotient ring.
$endgroup$
– rschwieb
Mar 28 at 16:51













$begingroup$
Sorry. I forgot to quote a paragraph. I have made it. It seems to use group theory.
$endgroup$
– bfhaha
Mar 28 at 16:59




$begingroup$
Sorry. I forgot to quote a paragraph. I have made it. It seems to use group theory.
$endgroup$
– bfhaha
Mar 28 at 16:59












$begingroup$
Af first glance, it seems to hint at employing the ring of Eisenstein integers. And a quick glance at an AoPS solution shows (unmotivated) integer calculations involving obvious Eisenstein integer norms, so it should be straightforward to reformulate that more naturally in Eisenstein arithmetic. Likely that is the "ring theoretic" solution implied in the book.
$endgroup$
– Bill Dubuque
Mar 28 at 18:33





$begingroup$
Af first glance, it seems to hint at employing the ring of Eisenstein integers. And a quick glance at an AoPS solution shows (unmotivated) integer calculations involving obvious Eisenstein integer norms, so it should be straightforward to reformulate that more naturally in Eisenstein arithmetic. Likely that is the "ring theoretic" solution implied in the book.
$endgroup$
– Bill Dubuque
Mar 28 at 18:33











0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166110%2fring-theoretical-method-of-solving-a-math-olympiad-problem%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166110%2fring-theoretical-method-of-solving-a-math-olympiad-problem%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu