Half Range Sine SeriesComputation Of full range fourier seriesFourier Series of The Sine FunctionFourier series with half rangeFourier sine series of $f = cos x$Find the half-range Fourier series expansion of $f(x) = cos(x)$Fourier sine series for $x^3$Half range Fourier sine series of cos(x) on 0 < x < $fracpi2$Find the Fourier series of rectified sine waveFourier Series Expansion for Half-Wave Sine ProblemFourier series of $left|xright|$

One verb to replace 'be a member of' a club

What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?

Unlock My Phone! February 2018

Should I tell management that I intend to leave due to bad software development practices?

In the UK, is it possible to get a referendum by a court decision?

files created then deleted at every second in tmp directory

What is the most common color to indicate the input-field is disabled?

How obscure is the use of 令 in 令和?

Why was Sir Cadogan fired?

How to coordinate airplane tickets?

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

Could the museum Saturn V's be refitted for one more flight?

Does Dispel Magic work on Tiny Hut?

What is a Samsaran Word™?

Did 'Cinema Songs' exist during Hiranyakshipu's time?

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

What is the opposite of "eschatology"?

Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?

Can a virus destroy the BIOS of a modern computer?

How can saying a song's name be a copyright violation?

What are the G forces leaving Earth orbit?

Why were 5.25" floppy drives cheaper than 8"?

What Exploit Are These User Agents Trying to Use?



Half Range Sine Series


Computation Of full range fourier seriesFourier Series of The Sine FunctionFourier series with half rangeFourier sine series of $f = cos x$Find the half-range Fourier series expansion of $f(x) = cos(x)$Fourier sine series for $x^3$Half range Fourier sine series of cos(x) on 0 < x < $fracpi2$Find the Fourier series of rectified sine waveFourier Series Expansion for Half-Wave Sine ProblemFourier series of $left|xright|$













4












$begingroup$


Question:
It is known that $f(x)=(x−4)^2$ for all $xin [0,4]$.



Compute the half range sine series expansion for $f(x)$.



My answer :



Half range series: $p=8$, $l=4$, $a_0=a_n=0$.



$$b_n=frac2Lint_0^Lf(x)sinleft(fracnpi xLright)d(x)=frac24int_0^4(x-4)^2sinleft(fracnpi x4right)d(x)$$



Partial Differentiation
Let $u=(x-4)^2$; $du=2(x-4)dx$; $v=frac-4npicos(fracnpi x4)$



beginalign
b_n&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npiint(x-4)cos(fracnpi x4)d(x)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npiintsin(fracnpi x4)d(x)]]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npi(frac-4npicosfracnpi x4)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi(frac16n^2pi^2cosfracnpi x4)]|^4_0
endalign



we know $cosnpi=(-1)^n$



$frac12[(0+frac128(-1)^nn^3pi^3)-(-frac64npi+frac128n^3pi^3)$



$b_n=frac64(-1)^nn^3pi^3-frac64n^3pi^3+frac32npi$



My teacher told me my $b_n$ is wrong and it seems that my working also looks like wrong. Can someone please help me to recalculate my $b_n$ please. Just help me once only guys.If I get this right I would able to get full marks.I would be very very grateful to you guys if you guys able to help me. If can suggest me any ideas or simpler way to solve it if you can.Thanks










share|cite|improve this question











$endgroup$











  • $begingroup$
    Should $b_n$ be the integral from $-L$ to $L$ or the integral from $0$ to $L$ because it switches from the first line to the second line without any multiplicative factor.
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:40










  • $begingroup$
    O to L. It alwys like that for Half Range Sine Series
    $endgroup$
    – David
    Sep 9 '12 at 6:48










  • $begingroup$
    But you wrote it as $-L$ to $L$ in your first definition of $b_n$....
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:49










  • $begingroup$
    this is the link for reference intmath.com/fourier-series/4-fourier-half-range-functions.php
    $endgroup$
    – David
    Sep 9 '12 at 6:49










  • $begingroup$
    I edited already
    $endgroup$
    – David
    Sep 9 '12 at 6:50















4












$begingroup$


Question:
It is known that $f(x)=(x−4)^2$ for all $xin [0,4]$.



Compute the half range sine series expansion for $f(x)$.



My answer :



Half range series: $p=8$, $l=4$, $a_0=a_n=0$.



$$b_n=frac2Lint_0^Lf(x)sinleft(fracnpi xLright)d(x)=frac24int_0^4(x-4)^2sinleft(fracnpi x4right)d(x)$$



Partial Differentiation
Let $u=(x-4)^2$; $du=2(x-4)dx$; $v=frac-4npicos(fracnpi x4)$



beginalign
b_n&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npiint(x-4)cos(fracnpi x4)d(x)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npiintsin(fracnpi x4)d(x)]]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npi(frac-4npicosfracnpi x4)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi(frac16n^2pi^2cosfracnpi x4)]|^4_0
endalign



we know $cosnpi=(-1)^n$



$frac12[(0+frac128(-1)^nn^3pi^3)-(-frac64npi+frac128n^3pi^3)$



$b_n=frac64(-1)^nn^3pi^3-frac64n^3pi^3+frac32npi$



My teacher told me my $b_n$ is wrong and it seems that my working also looks like wrong. Can someone please help me to recalculate my $b_n$ please. Just help me once only guys.If I get this right I would able to get full marks.I would be very very grateful to you guys if you guys able to help me. If can suggest me any ideas or simpler way to solve it if you can.Thanks










share|cite|improve this question











$endgroup$











  • $begingroup$
    Should $b_n$ be the integral from $-L$ to $L$ or the integral from $0$ to $L$ because it switches from the first line to the second line without any multiplicative factor.
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:40










  • $begingroup$
    O to L. It alwys like that for Half Range Sine Series
    $endgroup$
    – David
    Sep 9 '12 at 6:48










  • $begingroup$
    But you wrote it as $-L$ to $L$ in your first definition of $b_n$....
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:49










  • $begingroup$
    this is the link for reference intmath.com/fourier-series/4-fourier-half-range-functions.php
    $endgroup$
    – David
    Sep 9 '12 at 6:49










  • $begingroup$
    I edited already
    $endgroup$
    – David
    Sep 9 '12 at 6:50













4












4








4





$begingroup$


Question:
It is known that $f(x)=(x−4)^2$ for all $xin [0,4]$.



Compute the half range sine series expansion for $f(x)$.



My answer :



Half range series: $p=8$, $l=4$, $a_0=a_n=0$.



$$b_n=frac2Lint_0^Lf(x)sinleft(fracnpi xLright)d(x)=frac24int_0^4(x-4)^2sinleft(fracnpi x4right)d(x)$$



Partial Differentiation
Let $u=(x-4)^2$; $du=2(x-4)dx$; $v=frac-4npicos(fracnpi x4)$



beginalign
b_n&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npiint(x-4)cos(fracnpi x4)d(x)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npiintsin(fracnpi x4)d(x)]]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npi(frac-4npicosfracnpi x4)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi(frac16n^2pi^2cosfracnpi x4)]|^4_0
endalign



we know $cosnpi=(-1)^n$



$frac12[(0+frac128(-1)^nn^3pi^3)-(-frac64npi+frac128n^3pi^3)$



$b_n=frac64(-1)^nn^3pi^3-frac64n^3pi^3+frac32npi$



My teacher told me my $b_n$ is wrong and it seems that my working also looks like wrong. Can someone please help me to recalculate my $b_n$ please. Just help me once only guys.If I get this right I would able to get full marks.I would be very very grateful to you guys if you guys able to help me. If can suggest me any ideas or simpler way to solve it if you can.Thanks










share|cite|improve this question











$endgroup$




Question:
It is known that $f(x)=(x−4)^2$ for all $xin [0,4]$.



Compute the half range sine series expansion for $f(x)$.



My answer :



Half range series: $p=8$, $l=4$, $a_0=a_n=0$.



$$b_n=frac2Lint_0^Lf(x)sinleft(fracnpi xLright)d(x)=frac24int_0^4(x-4)^2sinleft(fracnpi x4right)d(x)$$



Partial Differentiation
Let $u=(x-4)^2$; $du=2(x-4)dx$; $v=frac-4npicos(fracnpi x4)$



beginalign
b_n&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npiint(x-4)cos(fracnpi x4)d(x)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2+frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npiintsin(fracnpi x4)d(x)]]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi[frac4npisin(fracnpi x4)(x-4)-frac4npi(frac-4npicosfracnpi x4)]|^4_0\
&=frac12[frac-4npicos(fracnpi x4)(x-4)^2$+$frac8npi(frac16n^2pi^2cosfracnpi x4)]|^4_0
endalign



we know $cosnpi=(-1)^n$



$frac12[(0+frac128(-1)^nn^3pi^3)-(-frac64npi+frac128n^3pi^3)$



$b_n=frac64(-1)^nn^3pi^3-frac64n^3pi^3+frac32npi$



My teacher told me my $b_n$ is wrong and it seems that my working also looks like wrong. Can someone please help me to recalculate my $b_n$ please. Just help me once only guys.If I get this right I would able to get full marks.I would be very very grateful to you guys if you guys able to help me. If can suggest me any ideas or simpler way to solve it if you can.Thanks







calculus real-analysis fourier-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 9 '12 at 8:20









Davide Giraudo

128k17156268




128k17156268










asked Sep 9 '12 at 6:31









DavidDavid

8019




8019











  • $begingroup$
    Should $b_n$ be the integral from $-L$ to $L$ or the integral from $0$ to $L$ because it switches from the first line to the second line without any multiplicative factor.
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:40










  • $begingroup$
    O to L. It alwys like that for Half Range Sine Series
    $endgroup$
    – David
    Sep 9 '12 at 6:48










  • $begingroup$
    But you wrote it as $-L$ to $L$ in your first definition of $b_n$....
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:49










  • $begingroup$
    this is the link for reference intmath.com/fourier-series/4-fourier-half-range-functions.php
    $endgroup$
    – David
    Sep 9 '12 at 6:49










  • $begingroup$
    I edited already
    $endgroup$
    – David
    Sep 9 '12 at 6:50
















  • $begingroup$
    Should $b_n$ be the integral from $-L$ to $L$ or the integral from $0$ to $L$ because it switches from the first line to the second line without any multiplicative factor.
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:40










  • $begingroup$
    O to L. It alwys like that for Half Range Sine Series
    $endgroup$
    – David
    Sep 9 '12 at 6:48










  • $begingroup$
    But you wrote it as $-L$ to $L$ in your first definition of $b_n$....
    $endgroup$
    – Euler....IS_ALIVE
    Sep 9 '12 at 6:49










  • $begingroup$
    this is the link for reference intmath.com/fourier-series/4-fourier-half-range-functions.php
    $endgroup$
    – David
    Sep 9 '12 at 6:49










  • $begingroup$
    I edited already
    $endgroup$
    – David
    Sep 9 '12 at 6:50















$begingroup$
Should $b_n$ be the integral from $-L$ to $L$ or the integral from $0$ to $L$ because it switches from the first line to the second line without any multiplicative factor.
$endgroup$
– Euler....IS_ALIVE
Sep 9 '12 at 6:40




$begingroup$
Should $b_n$ be the integral from $-L$ to $L$ or the integral from $0$ to $L$ because it switches from the first line to the second line without any multiplicative factor.
$endgroup$
– Euler....IS_ALIVE
Sep 9 '12 at 6:40












$begingroup$
O to L. It alwys like that for Half Range Sine Series
$endgroup$
– David
Sep 9 '12 at 6:48




$begingroup$
O to L. It alwys like that for Half Range Sine Series
$endgroup$
– David
Sep 9 '12 at 6:48












$begingroup$
But you wrote it as $-L$ to $L$ in your first definition of $b_n$....
$endgroup$
– Euler....IS_ALIVE
Sep 9 '12 at 6:49




$begingroup$
But you wrote it as $-L$ to $L$ in your first definition of $b_n$....
$endgroup$
– Euler....IS_ALIVE
Sep 9 '12 at 6:49












$begingroup$
this is the link for reference intmath.com/fourier-series/4-fourier-half-range-functions.php
$endgroup$
– David
Sep 9 '12 at 6:49




$begingroup$
this is the link for reference intmath.com/fourier-series/4-fourier-half-range-functions.php
$endgroup$
– David
Sep 9 '12 at 6:49












$begingroup$
I edited already
$endgroup$
– David
Sep 9 '12 at 6:50




$begingroup$
I edited already
$endgroup$
– David
Sep 9 '12 at 6:50










1 Answer
1






active

oldest

votes


















1












$begingroup$

The integral defining your $b_n$ is correct, but the final answer is wrong. It differs from mine by $64over npi$.



Here's my work from Mathematica:



Mathematica graphics



Here's graphical verification that we are indeed computing the series correctly (I took the 5th, 10th, and 50th partial sum, respectively):



Mathematica graphics






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
    $endgroup$
    – David
    May 29 '13 at 5:45










  • $begingroup$
    Yes, they are algebraically equivalent.
    $endgroup$
    – JohnD
    May 29 '13 at 15:06











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f193055%2fhalf-range-sine-series%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

The integral defining your $b_n$ is correct, but the final answer is wrong. It differs from mine by $64over npi$.



Here's my work from Mathematica:



Mathematica graphics



Here's graphical verification that we are indeed computing the series correctly (I took the 5th, 10th, and 50th partial sum, respectively):



Mathematica graphics






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
    $endgroup$
    – David
    May 29 '13 at 5:45










  • $begingroup$
    Yes, they are algebraically equivalent.
    $endgroup$
    – JohnD
    May 29 '13 at 15:06















1












$begingroup$

The integral defining your $b_n$ is correct, but the final answer is wrong. It differs from mine by $64over npi$.



Here's my work from Mathematica:



Mathematica graphics



Here's graphical verification that we are indeed computing the series correctly (I took the 5th, 10th, and 50th partial sum, respectively):



Mathematica graphics






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
    $endgroup$
    – David
    May 29 '13 at 5:45










  • $begingroup$
    Yes, they are algebraically equivalent.
    $endgroup$
    – JohnD
    May 29 '13 at 15:06













1












1








1





$begingroup$

The integral defining your $b_n$ is correct, but the final answer is wrong. It differs from mine by $64over npi$.



Here's my work from Mathematica:



Mathematica graphics



Here's graphical verification that we are indeed computing the series correctly (I took the 5th, 10th, and 50th partial sum, respectively):



Mathematica graphics






share|cite|improve this answer









$endgroup$



The integral defining your $b_n$ is correct, but the final answer is wrong. It differs from mine by $64over npi$.



Here's my work from Mathematica:



Mathematica graphics



Here's graphical verification that we are indeed computing the series correctly (I took the 5th, 10th, and 50th partial sum, respectively):



Mathematica graphics







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 20 '12 at 7:00









JohnDJohnD

12k32158




12k32158











  • $begingroup$
    Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
    $endgroup$
    – David
    May 29 '13 at 5:45










  • $begingroup$
    Yes, they are algebraically equivalent.
    $endgroup$
    – JohnD
    May 29 '13 at 15:06
















  • $begingroup$
    Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
    $endgroup$
    – David
    May 29 '13 at 5:45










  • $begingroup$
    Yes, they are algebraically equivalent.
    $endgroup$
    – JohnD
    May 29 '13 at 15:06















$begingroup$
Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
$endgroup$
– David
May 29 '13 at 5:45




$begingroup$
Hi JohnD. I check out my lecturer he said mine is correct now. Maybe yours is correct too but in different form I think
$endgroup$
– David
May 29 '13 at 5:45












$begingroup$
Yes, they are algebraically equivalent.
$endgroup$
– JohnD
May 29 '13 at 15:06




$begingroup$
Yes, they are algebraically equivalent.
$endgroup$
– JohnD
May 29 '13 at 15:06

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f193055%2fhalf-range-sine-series%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu