How do I avoid a complicated construction of an epsilon-function in the proof for taylor in k dimensions?When $epsilon$ shrinks, does $delta$ necessarily? If so, my proof makes sense. If not, can you help me fix it?Proving continuity by epsilon-delta proof for a function of two variables.Limit proof check, show $f$ is bounded in a neighborhood of its limit pointEpsilon-Delta proof for continuitythe choice of $epsilon$-$delta$ for uniform continuous derivatives$delta - epsilon$ proof that $f(x) = x^2-2$ is continuous for all $x in mathbbR$Test the Function for continuity using the Epsilon-Delta definition.How to understand the construction of these trigonometric polynomials?How can I approach proving this?Formal Epsilon Argument Proof for Sequence

Why was Sir Cadogan fired?

Can I hook these wires up to find the connection to a dead outlet?

What is the fastest integer factorization to break RSA?

Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?

How to travel to Japan while expressing milk?

Why do I get negative height?

how do we prove that a sum of two periods is still a period?

Is "/bin/[.exe" a legitimate file? [Cygwin, Windows 10]

How to show a landlord what we have in savings?

How could indestructible materials be used in power generation?

Should I tell management that I intend to leave due to bad software development practices?

Could neural networks be considered metaheuristics?

How to find if SQL server backup is encrypted with TDE without restoring the backup

Can a virus destroy the BIOS of a modern computer?

Is it a bad idea to plug the other end of ESD strap to wall ground?

Send out email when Apex Queueable fails and test it

Is there a hemisphere-neutral way of specifying a season?

What exactly is ineptocracy?

How dangerous is XSS

GFCI outlets - can they be repaired? Are they really needed at the end of a circuit?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

Getting extremely large arrows with tikzcd

How can I prove that a state of equilibrium is unstable?



How do I avoid a complicated construction of an epsilon-function in the proof for taylor in k dimensions?


When $epsilon$ shrinks, does $delta$ necessarily? If so, my proof makes sense. If not, can you help me fix it?Proving continuity by epsilon-delta proof for a function of two variables.Limit proof check, show $f$ is bounded in a neighborhood of its limit pointEpsilon-Delta proof for continuitythe choice of $epsilon$-$delta$ for uniform continuous derivatives$delta - epsilon$ proof that $f(x) = x^2-2$ is continuous for all $x in mathbbR$Test the Function for continuity using the Epsilon-Delta definition.How to understand the construction of these trigonometric polynomials?How can I approach proving this?Formal Epsilon Argument Proof for Sequence













0












$begingroup$


In my analysis textbook, we have a proof for the following theorem:




Taylor's limit-formula in k dimensions

Let $f:Omegatomathbb R$ be a $C^2$ function in the open set $Omega subseteq mathbb R^k$, and let $a in Omega$. Then we have
$$f(a + Delta x) = f(a) + nabla f(a) cdot Delta x + frac12Delta x^Tcdot D^2f(a) cdotDelta x + o(||Delta x||^2)$$
in the limit as $Delta x to 0$.




I'll reproduce our definition for small-o and part the relevant part of the proof of this theorem.




Definition: Small-o

Let $A subseteq mathbb R^k$ be a set, and let $f : A to mathbb R^m$ and $g : A to mathbb R^n$ be two functions. We say that $f = o(g)$ in the limit $x to a$ if there exists an epsilon-function $varepsilon : A to mathbb R^m$ such that
$$f(x) = varepsilon(x) cdot ||g(x)|| quad textfor all $x in A$.$$




An epsilon-function is just a function that goes to zero as $x to a$. Now, our proof for the Taylor theorem goes something like this:




Proof

Choose $varepsilon > 0$ arbitrarily. Now choose $delta > 0$ such that bunch of things are satisfied.



After a bunch of manipulations, we have shown that:
$$|text| leq kvarepsilon ||Delta x||^2$$
when $||Delta x|| < delta$, thus the expression is clearly $o(||Delta x||^2)$.




Now, of course $kvarepsilon$ is not an epsilon-function, as it is a positive real number, and thus does not have a limit of zero as $Delta x to 0$, so the proof does not actually directly use the definition of small-o.



While I can see how the fact that we have chosen $varepsilon$ arbitrarily should allow us to construct some sort of epsilon-function here, they haven't done so, and constructing this epsilon-function is, in my opinion, rather complicated. The construction I came up with is:




My construction of the epsilon-function
In the proof we are able to choose a $delta$ for every $varepsilon$. This means we could create a function $g : mathbb R_+ to mathbb R_+$ defined by $g(varepsilon) = textthe $delta$ for that $varepsilon$$, and since decreasing a $delta$ still yields a valid one, we can choose the $delta$s such that $g$ is increasing and has a limit of zero as $varepsilon to 0_+$.



Now we can create a function $h : mathbb R_+ to mathbb R_0,+$ defined by $h(delta) = inf_varepsilon in mathbb R_+delta leq g(varepsilon)$. (This is just the inverse of $g$ except it's also defined if $g$ is not surjective.) Notice that $h$ is also increasing and has a limit of zero as $delta to 0_+$.



Let's look at $xi(Delta x) = kh(2||Delta x||)$. Notice that $xi$ is an epsilon-function. By construction of $h$, if we choose $varepsilon = h(2||Delta x||)$ we get a $delta$ such that $||Delta x|| < 2||Delta x|| leq delta$. This means that since $$kvarepsilon ||Delta x||^2 = kh(2||Delta x||)||Delta x||^2 = xi(Delta x)||Delta x||^2,$$ and since $||Delta x|| < delta$, we have found an epsilon-function $xi$ such that $$|text| leq xi(Delta x)||Delta x||^2$$ for small enough $Delta x$.



Thus we have showed the thing is less than a $o(||Delta x||^2)$ function, and thus is also $o(||Delta x||^2)$.




The question is: Is there a simpler way to change the proof such that it doesn't handwave the fact that it is $o(||Delta x||^2)$.



One thing I tried is to add another condition to the selection of $delta$, namely $delta < varepsilon$, hoping I could use $||Delta x|| < delta$ to replace the $varepsilon$ with a $||Delta x||$, which is an epsilon-function, but the inequality is then $||Delta x|| < varepsilon$, while the thing we would need is $||Delta x|| geq varepsilon$.










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    In my analysis textbook, we have a proof for the following theorem:




    Taylor's limit-formula in k dimensions

    Let $f:Omegatomathbb R$ be a $C^2$ function in the open set $Omega subseteq mathbb R^k$, and let $a in Omega$. Then we have
    $$f(a + Delta x) = f(a) + nabla f(a) cdot Delta x + frac12Delta x^Tcdot D^2f(a) cdotDelta x + o(||Delta x||^2)$$
    in the limit as $Delta x to 0$.




    I'll reproduce our definition for small-o and part the relevant part of the proof of this theorem.




    Definition: Small-o

    Let $A subseteq mathbb R^k$ be a set, and let $f : A to mathbb R^m$ and $g : A to mathbb R^n$ be two functions. We say that $f = o(g)$ in the limit $x to a$ if there exists an epsilon-function $varepsilon : A to mathbb R^m$ such that
    $$f(x) = varepsilon(x) cdot ||g(x)|| quad textfor all $x in A$.$$




    An epsilon-function is just a function that goes to zero as $x to a$. Now, our proof for the Taylor theorem goes something like this:




    Proof

    Choose $varepsilon > 0$ arbitrarily. Now choose $delta > 0$ such that bunch of things are satisfied.



    After a bunch of manipulations, we have shown that:
    $$|text| leq kvarepsilon ||Delta x||^2$$
    when $||Delta x|| < delta$, thus the expression is clearly $o(||Delta x||^2)$.




    Now, of course $kvarepsilon$ is not an epsilon-function, as it is a positive real number, and thus does not have a limit of zero as $Delta x to 0$, so the proof does not actually directly use the definition of small-o.



    While I can see how the fact that we have chosen $varepsilon$ arbitrarily should allow us to construct some sort of epsilon-function here, they haven't done so, and constructing this epsilon-function is, in my opinion, rather complicated. The construction I came up with is:




    My construction of the epsilon-function
    In the proof we are able to choose a $delta$ for every $varepsilon$. This means we could create a function $g : mathbb R_+ to mathbb R_+$ defined by $g(varepsilon) = textthe $delta$ for that $varepsilon$$, and since decreasing a $delta$ still yields a valid one, we can choose the $delta$s such that $g$ is increasing and has a limit of zero as $varepsilon to 0_+$.



    Now we can create a function $h : mathbb R_+ to mathbb R_0,+$ defined by $h(delta) = inf_varepsilon in mathbb R_+delta leq g(varepsilon)$. (This is just the inverse of $g$ except it's also defined if $g$ is not surjective.) Notice that $h$ is also increasing and has a limit of zero as $delta to 0_+$.



    Let's look at $xi(Delta x) = kh(2||Delta x||)$. Notice that $xi$ is an epsilon-function. By construction of $h$, if we choose $varepsilon = h(2||Delta x||)$ we get a $delta$ such that $||Delta x|| < 2||Delta x|| leq delta$. This means that since $$kvarepsilon ||Delta x||^2 = kh(2||Delta x||)||Delta x||^2 = xi(Delta x)||Delta x||^2,$$ and since $||Delta x|| < delta$, we have found an epsilon-function $xi$ such that $$|text| leq xi(Delta x)||Delta x||^2$$ for small enough $Delta x$.



    Thus we have showed the thing is less than a $o(||Delta x||^2)$ function, and thus is also $o(||Delta x||^2)$.




    The question is: Is there a simpler way to change the proof such that it doesn't handwave the fact that it is $o(||Delta x||^2)$.



    One thing I tried is to add another condition to the selection of $delta$, namely $delta < varepsilon$, hoping I could use $||Delta x|| < delta$ to replace the $varepsilon$ with a $||Delta x||$, which is an epsilon-function, but the inequality is then $||Delta x|| < varepsilon$, while the thing we would need is $||Delta x|| geq varepsilon$.










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      In my analysis textbook, we have a proof for the following theorem:




      Taylor's limit-formula in k dimensions

      Let $f:Omegatomathbb R$ be a $C^2$ function in the open set $Omega subseteq mathbb R^k$, and let $a in Omega$. Then we have
      $$f(a + Delta x) = f(a) + nabla f(a) cdot Delta x + frac12Delta x^Tcdot D^2f(a) cdotDelta x + o(||Delta x||^2)$$
      in the limit as $Delta x to 0$.




      I'll reproduce our definition for small-o and part the relevant part of the proof of this theorem.




      Definition: Small-o

      Let $A subseteq mathbb R^k$ be a set, and let $f : A to mathbb R^m$ and $g : A to mathbb R^n$ be two functions. We say that $f = o(g)$ in the limit $x to a$ if there exists an epsilon-function $varepsilon : A to mathbb R^m$ such that
      $$f(x) = varepsilon(x) cdot ||g(x)|| quad textfor all $x in A$.$$




      An epsilon-function is just a function that goes to zero as $x to a$. Now, our proof for the Taylor theorem goes something like this:




      Proof

      Choose $varepsilon > 0$ arbitrarily. Now choose $delta > 0$ such that bunch of things are satisfied.



      After a bunch of manipulations, we have shown that:
      $$|text| leq kvarepsilon ||Delta x||^2$$
      when $||Delta x|| < delta$, thus the expression is clearly $o(||Delta x||^2)$.




      Now, of course $kvarepsilon$ is not an epsilon-function, as it is a positive real number, and thus does not have a limit of zero as $Delta x to 0$, so the proof does not actually directly use the definition of small-o.



      While I can see how the fact that we have chosen $varepsilon$ arbitrarily should allow us to construct some sort of epsilon-function here, they haven't done so, and constructing this epsilon-function is, in my opinion, rather complicated. The construction I came up with is:




      My construction of the epsilon-function
      In the proof we are able to choose a $delta$ for every $varepsilon$. This means we could create a function $g : mathbb R_+ to mathbb R_+$ defined by $g(varepsilon) = textthe $delta$ for that $varepsilon$$, and since decreasing a $delta$ still yields a valid one, we can choose the $delta$s such that $g$ is increasing and has a limit of zero as $varepsilon to 0_+$.



      Now we can create a function $h : mathbb R_+ to mathbb R_0,+$ defined by $h(delta) = inf_varepsilon in mathbb R_+delta leq g(varepsilon)$. (This is just the inverse of $g$ except it's also defined if $g$ is not surjective.) Notice that $h$ is also increasing and has a limit of zero as $delta to 0_+$.



      Let's look at $xi(Delta x) = kh(2||Delta x||)$. Notice that $xi$ is an epsilon-function. By construction of $h$, if we choose $varepsilon = h(2||Delta x||)$ we get a $delta$ such that $||Delta x|| < 2||Delta x|| leq delta$. This means that since $$kvarepsilon ||Delta x||^2 = kh(2||Delta x||)||Delta x||^2 = xi(Delta x)||Delta x||^2,$$ and since $||Delta x|| < delta$, we have found an epsilon-function $xi$ such that $$|text| leq xi(Delta x)||Delta x||^2$$ for small enough $Delta x$.



      Thus we have showed the thing is less than a $o(||Delta x||^2)$ function, and thus is also $o(||Delta x||^2)$.




      The question is: Is there a simpler way to change the proof such that it doesn't handwave the fact that it is $o(||Delta x||^2)$.



      One thing I tried is to add another condition to the selection of $delta$, namely $delta < varepsilon$, hoping I could use $||Delta x|| < delta$ to replace the $varepsilon$ with a $||Delta x||$, which is an epsilon-function, but the inequality is then $||Delta x|| < varepsilon$, while the thing we would need is $||Delta x|| geq varepsilon$.










      share|cite|improve this question









      $endgroup$




      In my analysis textbook, we have a proof for the following theorem:




      Taylor's limit-formula in k dimensions

      Let $f:Omegatomathbb R$ be a $C^2$ function in the open set $Omega subseteq mathbb R^k$, and let $a in Omega$. Then we have
      $$f(a + Delta x) = f(a) + nabla f(a) cdot Delta x + frac12Delta x^Tcdot D^2f(a) cdotDelta x + o(||Delta x||^2)$$
      in the limit as $Delta x to 0$.




      I'll reproduce our definition for small-o and part the relevant part of the proof of this theorem.




      Definition: Small-o

      Let $A subseteq mathbb R^k$ be a set, and let $f : A to mathbb R^m$ and $g : A to mathbb R^n$ be two functions. We say that $f = o(g)$ in the limit $x to a$ if there exists an epsilon-function $varepsilon : A to mathbb R^m$ such that
      $$f(x) = varepsilon(x) cdot ||g(x)|| quad textfor all $x in A$.$$




      An epsilon-function is just a function that goes to zero as $x to a$. Now, our proof for the Taylor theorem goes something like this:




      Proof

      Choose $varepsilon > 0$ arbitrarily. Now choose $delta > 0$ such that bunch of things are satisfied.



      After a bunch of manipulations, we have shown that:
      $$|text| leq kvarepsilon ||Delta x||^2$$
      when $||Delta x|| < delta$, thus the expression is clearly $o(||Delta x||^2)$.




      Now, of course $kvarepsilon$ is not an epsilon-function, as it is a positive real number, and thus does not have a limit of zero as $Delta x to 0$, so the proof does not actually directly use the definition of small-o.



      While I can see how the fact that we have chosen $varepsilon$ arbitrarily should allow us to construct some sort of epsilon-function here, they haven't done so, and constructing this epsilon-function is, in my opinion, rather complicated. The construction I came up with is:




      My construction of the epsilon-function
      In the proof we are able to choose a $delta$ for every $varepsilon$. This means we could create a function $g : mathbb R_+ to mathbb R_+$ defined by $g(varepsilon) = textthe $delta$ for that $varepsilon$$, and since decreasing a $delta$ still yields a valid one, we can choose the $delta$s such that $g$ is increasing and has a limit of zero as $varepsilon to 0_+$.



      Now we can create a function $h : mathbb R_+ to mathbb R_0,+$ defined by $h(delta) = inf_varepsilon in mathbb R_+delta leq g(varepsilon)$. (This is just the inverse of $g$ except it's also defined if $g$ is not surjective.) Notice that $h$ is also increasing and has a limit of zero as $delta to 0_+$.



      Let's look at $xi(Delta x) = kh(2||Delta x||)$. Notice that $xi$ is an epsilon-function. By construction of $h$, if we choose $varepsilon = h(2||Delta x||)$ we get a $delta$ such that $||Delta x|| < 2||Delta x|| leq delta$. This means that since $$kvarepsilon ||Delta x||^2 = kh(2||Delta x||)||Delta x||^2 = xi(Delta x)||Delta x||^2,$$ and since $||Delta x|| < delta$, we have found an epsilon-function $xi$ such that $$|text| leq xi(Delta x)||Delta x||^2$$ for small enough $Delta x$.



      Thus we have showed the thing is less than a $o(||Delta x||^2)$ function, and thus is also $o(||Delta x||^2)$.




      The question is: Is there a simpler way to change the proof such that it doesn't handwave the fact that it is $o(||Delta x||^2)$.



      One thing I tried is to add another condition to the selection of $delta$, namely $delta < varepsilon$, hoping I could use $||Delta x|| < delta$ to replace the $varepsilon$ with a $||Delta x||$, which is an epsilon-function, but the inequality is then $||Delta x|| < varepsilon$, while the thing we would need is $||Delta x|| geq varepsilon$.







      real-analysis analysis proof-writing asymptotics taylor-expansion






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 28 at 15:17









      Alice RyhlAlice Ryhl

      6,09011436




      6,09011436




















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166020%2fhow-do-i-avoid-a-complicated-construction-of-an-epsilon-function-in-the-proof-fo%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166020%2fhow-do-i-avoid-a-complicated-construction-of-an-epsilon-function-in-the-proof-fo%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu