Integrating a real nasty!Nasty Integral - Closed form solution?Integral evaluation $int_-infty^inftyfraccos (ax)pi (1+x^2)dx$Complex contour integralsMethod for integrating $int_-infty^infty x e^frac-x^22 dx$?Can this integral be evaluated/approximated?Integrating a Linear Operator $A:Hlongrightarrow H$ (Matrix)Is this way of integrating correct?Are there real definite integrals which can only be evaluated by contour integration?Real integrals in the complex planeHow can I use residues to solve this real integral?

Multi tool use
What are the G forces leaving Earth orbit?
Am I breaking OOP practice with this architecture?
Can someone clarify Hamming's notion of important problems in relation to modern academia?
Is there an expression that means doing something right before you will need it rather than doing it in case you might need it?
How could indestructible materials be used in power generation?
How to show a landlord what we have in savings?
How many wives did king shaul have
Are British MPs missing the point, with these 'Indicative Votes'?
Was the Stack Exchange "Happy April Fools" page fitting with the '90's code?
What exactly is ineptocracy?
How exploitable/balanced is this homebrew spell: Spell Permanency?
Does Dispel Magic work on Tiny Hut?
How does a dynamic QR code work?
One verb to replace 'be a member of' a club
What is an equivalently powerful replacement spell for the Yuan-Ti's Suggestion spell?
Car headlights in a world without electricity
How do conventional missiles fly?
How dangerous is XSS
Did 'Cinema Songs' exist during Hiranyakshipu's time?
What Exploit Are These User Agents Trying to Use?
Do Iron Man suits sport waste management systems?
Why didn't Boeing produce its own regional jet?
Forgetting the musical notes while performing in concert
Can I hook these wires up to find the connection to a dead outlet?
Integrating a real nasty!
Nasty Integral - Closed form solution?Integral evaluation $int_-infty^inftyfraccos (ax)pi (1+x^2)dx$Complex contour integralsMethod for integrating $int_-infty^infty x e^frac-x^22 dx$?Can this integral be evaluated/approximated?Integrating a Linear Operator $A:Hlongrightarrow H$ (Matrix)Is this way of integrating correct?Are there real definite integrals which can only be evaluated by contour integration?Real integrals in the complex planeHow can I use residues to solve this real integral?
$begingroup$
I came across this beast
$$int_0^pi ln(1-2a cosx +a^2)cosnx , dx $$
where $n=1,2,3,...$ and $a$ is an arbitrary real. Can this be down WITHOUT contour integration?
integration
$endgroup$
add a comment |
$begingroup$
I came across this beast
$$int_0^pi ln(1-2a cosx +a^2)cosnx , dx $$
where $n=1,2,3,...$ and $a$ is an arbitrary real. Can this be down WITHOUT contour integration?
integration
$endgroup$
add a comment |
$begingroup$
I came across this beast
$$int_0^pi ln(1-2a cosx +a^2)cosnx , dx $$
where $n=1,2,3,...$ and $a$ is an arbitrary real. Can this be down WITHOUT contour integration?
integration
$endgroup$
I came across this beast
$$int_0^pi ln(1-2a cosx +a^2)cosnx , dx $$
where $n=1,2,3,...$ and $a$ is an arbitrary real. Can this be down WITHOUT contour integration?
integration
integration
asked Mar 28 at 15:57
keeran_q789keeran_q789
184
184
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $|a|<1$, we have
$$
I'(a)=2int_0^pi fraccos nx(a-cos x)1-2acos x+a^2dx=int_0^2pi fraccos nx(a-cos x)1-2acos x+a^2dx.
$$ Using the Fourier series $displaystylefrac11-a^2sum_k=-infty^infty a^e^ikx = frac11-2acos x+a^2$, we have for $nge 1$
$$beginalign*
I'(a)&=frac14(1-a^2)sum_kinBbb Z a^int_0^2pie^ikx(e^inx+e^-inx)(2a-e^ix-e^-ix) dx\&=fracpi2(1-a^2)sum_kinBbb Z a^left(2amathbf1_k-mathbf1_-mathbf1_kright)\&=fracpi2(1-a^2)left( 4a^n+1-2a^n+1-2a^n-1right)\&=-pi a^n-1,
endalign*$$ which implies that $displaystyle I(a)=-fracpi a^nn +I(0)=-fracpi a^nn$. For $|a|>1$, use
$$
I(a)=int_0^pi left(lnleft(1-2 fraccosxa +frac1a^2right)+2ln aright)cosnx dx
$$ to obtain
$$
I(a)=-fracpi a^-nn.
$$
$endgroup$
1
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166082%2fintegrating-a-real-nasty%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $|a|<1$, we have
$$
I'(a)=2int_0^pi fraccos nx(a-cos x)1-2acos x+a^2dx=int_0^2pi fraccos nx(a-cos x)1-2acos x+a^2dx.
$$ Using the Fourier series $displaystylefrac11-a^2sum_k=-infty^infty a^e^ikx = frac11-2acos x+a^2$, we have for $nge 1$
$$beginalign*
I'(a)&=frac14(1-a^2)sum_kinBbb Z a^int_0^2pie^ikx(e^inx+e^-inx)(2a-e^ix-e^-ix) dx\&=fracpi2(1-a^2)sum_kinBbb Z a^left(2amathbf1_k-mathbf1_-mathbf1_kright)\&=fracpi2(1-a^2)left( 4a^n+1-2a^n+1-2a^n-1right)\&=-pi a^n-1,
endalign*$$ which implies that $displaystyle I(a)=-fracpi a^nn +I(0)=-fracpi a^nn$. For $|a|>1$, use
$$
I(a)=int_0^pi left(lnleft(1-2 fraccosxa +frac1a^2right)+2ln aright)cosnx dx
$$ to obtain
$$
I(a)=-fracpi a^-nn.
$$
$endgroup$
1
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
add a comment |
$begingroup$
For $|a|<1$, we have
$$
I'(a)=2int_0^pi fraccos nx(a-cos x)1-2acos x+a^2dx=int_0^2pi fraccos nx(a-cos x)1-2acos x+a^2dx.
$$ Using the Fourier series $displaystylefrac11-a^2sum_k=-infty^infty a^e^ikx = frac11-2acos x+a^2$, we have for $nge 1$
$$beginalign*
I'(a)&=frac14(1-a^2)sum_kinBbb Z a^int_0^2pie^ikx(e^inx+e^-inx)(2a-e^ix-e^-ix) dx\&=fracpi2(1-a^2)sum_kinBbb Z a^left(2amathbf1_k-mathbf1_-mathbf1_kright)\&=fracpi2(1-a^2)left( 4a^n+1-2a^n+1-2a^n-1right)\&=-pi a^n-1,
endalign*$$ which implies that $displaystyle I(a)=-fracpi a^nn +I(0)=-fracpi a^nn$. For $|a|>1$, use
$$
I(a)=int_0^pi left(lnleft(1-2 fraccosxa +frac1a^2right)+2ln aright)cosnx dx
$$ to obtain
$$
I(a)=-fracpi a^-nn.
$$
$endgroup$
1
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
add a comment |
$begingroup$
For $|a|<1$, we have
$$
I'(a)=2int_0^pi fraccos nx(a-cos x)1-2acos x+a^2dx=int_0^2pi fraccos nx(a-cos x)1-2acos x+a^2dx.
$$ Using the Fourier series $displaystylefrac11-a^2sum_k=-infty^infty a^e^ikx = frac11-2acos x+a^2$, we have for $nge 1$
$$beginalign*
I'(a)&=frac14(1-a^2)sum_kinBbb Z a^int_0^2pie^ikx(e^inx+e^-inx)(2a-e^ix-e^-ix) dx\&=fracpi2(1-a^2)sum_kinBbb Z a^left(2amathbf1_k-mathbf1_-mathbf1_kright)\&=fracpi2(1-a^2)left( 4a^n+1-2a^n+1-2a^n-1right)\&=-pi a^n-1,
endalign*$$ which implies that $displaystyle I(a)=-fracpi a^nn +I(0)=-fracpi a^nn$. For $|a|>1$, use
$$
I(a)=int_0^pi left(lnleft(1-2 fraccosxa +frac1a^2right)+2ln aright)cosnx dx
$$ to obtain
$$
I(a)=-fracpi a^-nn.
$$
$endgroup$
For $|a|<1$, we have
$$
I'(a)=2int_0^pi fraccos nx(a-cos x)1-2acos x+a^2dx=int_0^2pi fraccos nx(a-cos x)1-2acos x+a^2dx.
$$ Using the Fourier series $displaystylefrac11-a^2sum_k=-infty^infty a^e^ikx = frac11-2acos x+a^2$, we have for $nge 1$
$$beginalign*
I'(a)&=frac14(1-a^2)sum_kinBbb Z a^int_0^2pie^ikx(e^inx+e^-inx)(2a-e^ix-e^-ix) dx\&=fracpi2(1-a^2)sum_kinBbb Z a^left(2amathbf1_k-mathbf1_-mathbf1_kright)\&=fracpi2(1-a^2)left( 4a^n+1-2a^n+1-2a^n-1right)\&=-pi a^n-1,
endalign*$$ which implies that $displaystyle I(a)=-fracpi a^nn +I(0)=-fracpi a^nn$. For $|a|>1$, use
$$
I(a)=int_0^pi left(lnleft(1-2 fraccosxa +frac1a^2right)+2ln aright)cosnx dx
$$ to obtain
$$
I(a)=-fracpi a^-nn.
$$
answered Mar 28 at 16:41
NaoNao
1836
1836
1
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
add a comment |
1
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
1
1
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
Nice (+1). Where can one see a proof of that interesting Fourier series?
$endgroup$
– clathratus
Mar 28 at 16:47
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
$begingroup$
@clathratus Thank you :) In fact, it even has a famous name Poisson kernel in complex/harmonic analysis.
$endgroup$
– Nao
Mar 28 at 16:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166082%2fintegrating-a-real-nasty%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
cQp1KXGV3QE4hwFzppuUvWLG tLRVuxCMmHt,k,F6Q lI5hb5EgYFlqa8 2c3yMSiC