Interpolation inequality for Holder continuous functions.Proving an operator is compactfunctions in Holder spaceApproximate Holder continuous functions by smooth functions$f$ is a real function and it is $alpha$-Holder continuous with $alpha>1$. Is $f$ constant?Inclusion of Holder SpacesHolder norms inequalityInterpolation inequality involving Holder seminorms and Lebesgue normsHolder continuity EquivalenceDimension of Holder spaceClosure of Continuously DifferentiableFunctions in Holder Space

OP Amp not amplifying audio signal

Why do I get negative height?

Is this draw by repetition?

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

Notepad++ delete until colon for every line with replace all

Is "/bin/[.exe" a legitimate file? [Cygwin, Windows 10]

Could the museum Saturn V's be refitted for one more flight?

how do we prove that a sum of two periods is still a period?

Could neural networks be considered metaheuristics?

Convert seconds to minutes

How seriously should I take size and weight limits of hand luggage?

Finitely generated matrix groups whose eigenvalues are all algebraic

Does Dispel Magic work on Tiny Hut?

How to find if SQL server backup is encrypted with TDE without restoring the backup

What are the G forces leaving Earth orbit?

Can I hook these wires up to find the connection to a dead outlet?

What Exploit Are These User Agents Trying to Use?

Does int main() need a declaration on C++?

How do conventional missiles fly?

How to remove border from elements in the last row?

How badly should I try to prevent a user from XSSing themselves?

How does a dynamic QR code work?

Can a virus destroy the BIOS of a modern computer?

What exactly is ineptocracy?



Interpolation inequality for Holder continuous functions.


Proving an operator is compactfunctions in Holder spaceApproximate Holder continuous functions by smooth functions$f$ is a real function and it is $alpha$-Holder continuous with $alpha>1$. Is $f$ constant?Inclusion of Holder SpacesHolder norms inequalityInterpolation inequality involving Holder seminorms and Lebesgue normsHolder continuity EquivalenceDimension of Holder spaceClosure of Continuously DifferentiableFunctions in Holder Space













2












$begingroup$


Let $Omega$ be a bounded open connected set in $mathbbR^n$ with $C^1$ boundary and let $0<alpha<1$. Then there exists a real number $sigma_0>0$ and a dimensional constant $C>0$ such that $$||Du||_L^infty(Omega)leq sigma^alpha [|Du|]_alpha,Omega+fracCsigma||u||_L^infty(Omega)$$ and $$[u]_alpha,Omegaleq sigma[|Du|]_alpha,Omega+fracCsigma^alpha||u||_L^infty(Omega)$$ hold for all $0<sigma<sigma_0$ and for all $uin C^1,alpha(barOmega)$. Here $||u||_C^1,alpha=||u||_L^infty(Omega)+||Du||_L^infty(Omega)+[|Du|]_alpha$ and $[u]_alpha=sup_xneq yfrac$.



N.B. I have proved the above results for balls and then for domain with $C^2$ boundary. I cant proceed for $C^1$ boundary domain. Any help will be great.










share|cite|improve this question









$endgroup$











  • $begingroup$
    It might help if you showed how you dealt with $C^2$ boundaries.
    $endgroup$
    – robjohn
    Mar 28 at 15:20










  • $begingroup$
    $C^2$ boundary have the interior ball property and i have the results for balls.
    $endgroup$
    – mudok
    Mar 28 at 18:11















2












$begingroup$


Let $Omega$ be a bounded open connected set in $mathbbR^n$ with $C^1$ boundary and let $0<alpha<1$. Then there exists a real number $sigma_0>0$ and a dimensional constant $C>0$ such that $$||Du||_L^infty(Omega)leq sigma^alpha [|Du|]_alpha,Omega+fracCsigma||u||_L^infty(Omega)$$ and $$[u]_alpha,Omegaleq sigma[|Du|]_alpha,Omega+fracCsigma^alpha||u||_L^infty(Omega)$$ hold for all $0<sigma<sigma_0$ and for all $uin C^1,alpha(barOmega)$. Here $||u||_C^1,alpha=||u||_L^infty(Omega)+||Du||_L^infty(Omega)+[|Du|]_alpha$ and $[u]_alpha=sup_xneq yfrac$.



N.B. I have proved the above results for balls and then for domain with $C^2$ boundary. I cant proceed for $C^1$ boundary domain. Any help will be great.










share|cite|improve this question









$endgroup$











  • $begingroup$
    It might help if you showed how you dealt with $C^2$ boundaries.
    $endgroup$
    – robjohn
    Mar 28 at 15:20










  • $begingroup$
    $C^2$ boundary have the interior ball property and i have the results for balls.
    $endgroup$
    – mudok
    Mar 28 at 18:11













2












2








2


0



$begingroup$


Let $Omega$ be a bounded open connected set in $mathbbR^n$ with $C^1$ boundary and let $0<alpha<1$. Then there exists a real number $sigma_0>0$ and a dimensional constant $C>0$ such that $$||Du||_L^infty(Omega)leq sigma^alpha [|Du|]_alpha,Omega+fracCsigma||u||_L^infty(Omega)$$ and $$[u]_alpha,Omegaleq sigma[|Du|]_alpha,Omega+fracCsigma^alpha||u||_L^infty(Omega)$$ hold for all $0<sigma<sigma_0$ and for all $uin C^1,alpha(barOmega)$. Here $||u||_C^1,alpha=||u||_L^infty(Omega)+||Du||_L^infty(Omega)+[|Du|]_alpha$ and $[u]_alpha=sup_xneq yfrac$.



N.B. I have proved the above results for balls and then for domain with $C^2$ boundary. I cant proceed for $C^1$ boundary domain. Any help will be great.










share|cite|improve this question









$endgroup$




Let $Omega$ be a bounded open connected set in $mathbbR^n$ with $C^1$ boundary and let $0<alpha<1$. Then there exists a real number $sigma_0>0$ and a dimensional constant $C>0$ such that $$||Du||_L^infty(Omega)leq sigma^alpha [|Du|]_alpha,Omega+fracCsigma||u||_L^infty(Omega)$$ and $$[u]_alpha,Omegaleq sigma[|Du|]_alpha,Omega+fracCsigma^alpha||u||_L^infty(Omega)$$ hold for all $0<sigma<sigma_0$ and for all $uin C^1,alpha(barOmega)$. Here $||u||_C^1,alpha=||u||_L^infty(Omega)+||Du||_L^infty(Omega)+[|Du|]_alpha$ and $[u]_alpha=sup_xneq yfrac$.



N.B. I have proved the above results for balls and then for domain with $C^2$ boundary. I cant proceed for $C^1$ boundary domain. Any help will be great.







real-analysis pde holder-spaces interpolation-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 24 at 5:43









mudokmudok

374315




374315











  • $begingroup$
    It might help if you showed how you dealt with $C^2$ boundaries.
    $endgroup$
    – robjohn
    Mar 28 at 15:20










  • $begingroup$
    $C^2$ boundary have the interior ball property and i have the results for balls.
    $endgroup$
    – mudok
    Mar 28 at 18:11
















  • $begingroup$
    It might help if you showed how you dealt with $C^2$ boundaries.
    $endgroup$
    – robjohn
    Mar 28 at 15:20










  • $begingroup$
    $C^2$ boundary have the interior ball property and i have the results for balls.
    $endgroup$
    – mudok
    Mar 28 at 18:11















$begingroup$
It might help if you showed how you dealt with $C^2$ boundaries.
$endgroup$
– robjohn
Mar 28 at 15:20




$begingroup$
It might help if you showed how you dealt with $C^2$ boundaries.
$endgroup$
– robjohn
Mar 28 at 15:20












$begingroup$
$C^2$ boundary have the interior ball property and i have the results for balls.
$endgroup$
– mudok
Mar 28 at 18:11




$begingroup$
$C^2$ boundary have the interior ball property and i have the results for balls.
$endgroup$
– mudok
Mar 28 at 18:11










1 Answer
1






active

oldest

votes


















0





+100







$begingroup$

Since $Omega$ is bounded, its closure its compact. Also since $uin
C^1,alpha(overlineOmega)$
, you have that $Du$ is continuous. Hence
there exists $x_0inoverlineOmega$ such that
$$
|Du(x_0)|=max_xinoverlineOmega|Du(x)|.
$$

In particular, $u$ is differentiable $x_0$. Thus,
$$
fracpartial upartialnu(x_0)=Du(x_0)cdotnu,
$$

where $fracpartial upartialnu$ is a directional derivative in an
admissible direction $nuinmathbbR^n$, with $|nu|=1$. Now since
$partialOmega$ is of class $C^1$, there is a cone $C$ such that every
point $xinoverlineOmega$ is the vertex of a cone $C_x$ congruent to $C$
and contained in $Omega$. Hence, if you consider the cone $C_x_0$, you
can find $n$ linearly independent directions $nu_1,ldots,nu_n$ such
that the segments $x_0+tnu_i$, $tinlbrack0,h]$ are contained in the
cone $C_x_0$, where $h>0$. If you consider the system of $n$ equations
$$
fracpartial upartialnu_i(x_0)=Du(x_0)cdotnu_i,
$$

in the $n$ unknowns $fracpartial upartial x_i(x_0)$, you have that
the determinant is different from zero since the vectors are linearly
independent. Hence, you can write
$$
fracpartial upartial x_i(x_0)=sum_j=1^nc_i,jfracpartial
upartialnu_j(x_0),
$$

where the numbers $c_i,j$ depent only on the directions $nu_1,ldots
,nu_n$
.



Along each segment $S_i=x_0+tnu_i$, $tinlbrack0,h]$ you can apply
your inequality for $n=1$ to the function $g_i(t):=u(x_0+tnu_i)$,
$tinlbrack0,h]$.



Now you have to prove that the coefficients $c_i,j$ depend only on $Omega$.
I have to think about this, but if you rotate the cone, your new directions
are $Rnu_1,ldots,Rnu_n$, where $R$ is your rotation, so the determinant
should not change.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
    $endgroup$
    – mudok
    Mar 30 at 15:56










  • $begingroup$
    yes, you are correct
    $endgroup$
    – Gio67
    Mar 30 at 16:08










  • $begingroup$
    one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
    $endgroup$
    – mudok
    Mar 30 at 17:11










  • $begingroup$
    up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
    $endgroup$
    – Gio67
    2 days ago











  • $begingroup$
    $C^1$ boundary imply uniform cone property or only cone property?
    $endgroup$
    – mudok
    2 days ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160154%2finterpolation-inequality-for-holder-continuous-functions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0





+100







$begingroup$

Since $Omega$ is bounded, its closure its compact. Also since $uin
C^1,alpha(overlineOmega)$
, you have that $Du$ is continuous. Hence
there exists $x_0inoverlineOmega$ such that
$$
|Du(x_0)|=max_xinoverlineOmega|Du(x)|.
$$

In particular, $u$ is differentiable $x_0$. Thus,
$$
fracpartial upartialnu(x_0)=Du(x_0)cdotnu,
$$

where $fracpartial upartialnu$ is a directional derivative in an
admissible direction $nuinmathbbR^n$, with $|nu|=1$. Now since
$partialOmega$ is of class $C^1$, there is a cone $C$ such that every
point $xinoverlineOmega$ is the vertex of a cone $C_x$ congruent to $C$
and contained in $Omega$. Hence, if you consider the cone $C_x_0$, you
can find $n$ linearly independent directions $nu_1,ldots,nu_n$ such
that the segments $x_0+tnu_i$, $tinlbrack0,h]$ are contained in the
cone $C_x_0$, where $h>0$. If you consider the system of $n$ equations
$$
fracpartial upartialnu_i(x_0)=Du(x_0)cdotnu_i,
$$

in the $n$ unknowns $fracpartial upartial x_i(x_0)$, you have that
the determinant is different from zero since the vectors are linearly
independent. Hence, you can write
$$
fracpartial upartial x_i(x_0)=sum_j=1^nc_i,jfracpartial
upartialnu_j(x_0),
$$

where the numbers $c_i,j$ depent only on the directions $nu_1,ldots
,nu_n$
.



Along each segment $S_i=x_0+tnu_i$, $tinlbrack0,h]$ you can apply
your inequality for $n=1$ to the function $g_i(t):=u(x_0+tnu_i)$,
$tinlbrack0,h]$.



Now you have to prove that the coefficients $c_i,j$ depend only on $Omega$.
I have to think about this, but if you rotate the cone, your new directions
are $Rnu_1,ldots,Rnu_n$, where $R$ is your rotation, so the determinant
should not change.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
    $endgroup$
    – mudok
    Mar 30 at 15:56










  • $begingroup$
    yes, you are correct
    $endgroup$
    – Gio67
    Mar 30 at 16:08










  • $begingroup$
    one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
    $endgroup$
    – mudok
    Mar 30 at 17:11










  • $begingroup$
    up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
    $endgroup$
    – Gio67
    2 days ago











  • $begingroup$
    $C^1$ boundary imply uniform cone property or only cone property?
    $endgroup$
    – mudok
    2 days ago















0





+100







$begingroup$

Since $Omega$ is bounded, its closure its compact. Also since $uin
C^1,alpha(overlineOmega)$
, you have that $Du$ is continuous. Hence
there exists $x_0inoverlineOmega$ such that
$$
|Du(x_0)|=max_xinoverlineOmega|Du(x)|.
$$

In particular, $u$ is differentiable $x_0$. Thus,
$$
fracpartial upartialnu(x_0)=Du(x_0)cdotnu,
$$

where $fracpartial upartialnu$ is a directional derivative in an
admissible direction $nuinmathbbR^n$, with $|nu|=1$. Now since
$partialOmega$ is of class $C^1$, there is a cone $C$ such that every
point $xinoverlineOmega$ is the vertex of a cone $C_x$ congruent to $C$
and contained in $Omega$. Hence, if you consider the cone $C_x_0$, you
can find $n$ linearly independent directions $nu_1,ldots,nu_n$ such
that the segments $x_0+tnu_i$, $tinlbrack0,h]$ are contained in the
cone $C_x_0$, where $h>0$. If you consider the system of $n$ equations
$$
fracpartial upartialnu_i(x_0)=Du(x_0)cdotnu_i,
$$

in the $n$ unknowns $fracpartial upartial x_i(x_0)$, you have that
the determinant is different from zero since the vectors are linearly
independent. Hence, you can write
$$
fracpartial upartial x_i(x_0)=sum_j=1^nc_i,jfracpartial
upartialnu_j(x_0),
$$

where the numbers $c_i,j$ depent only on the directions $nu_1,ldots
,nu_n$
.



Along each segment $S_i=x_0+tnu_i$, $tinlbrack0,h]$ you can apply
your inequality for $n=1$ to the function $g_i(t):=u(x_0+tnu_i)$,
$tinlbrack0,h]$.



Now you have to prove that the coefficients $c_i,j$ depend only on $Omega$.
I have to think about this, but if you rotate the cone, your new directions
are $Rnu_1,ldots,Rnu_n$, where $R$ is your rotation, so the determinant
should not change.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
    $endgroup$
    – mudok
    Mar 30 at 15:56










  • $begingroup$
    yes, you are correct
    $endgroup$
    – Gio67
    Mar 30 at 16:08










  • $begingroup$
    one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
    $endgroup$
    – mudok
    Mar 30 at 17:11










  • $begingroup$
    up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
    $endgroup$
    – Gio67
    2 days ago











  • $begingroup$
    $C^1$ boundary imply uniform cone property or only cone property?
    $endgroup$
    – mudok
    2 days ago













0





+100







0





+100



0




+100



$begingroup$

Since $Omega$ is bounded, its closure its compact. Also since $uin
C^1,alpha(overlineOmega)$
, you have that $Du$ is continuous. Hence
there exists $x_0inoverlineOmega$ such that
$$
|Du(x_0)|=max_xinoverlineOmega|Du(x)|.
$$

In particular, $u$ is differentiable $x_0$. Thus,
$$
fracpartial upartialnu(x_0)=Du(x_0)cdotnu,
$$

where $fracpartial upartialnu$ is a directional derivative in an
admissible direction $nuinmathbbR^n$, with $|nu|=1$. Now since
$partialOmega$ is of class $C^1$, there is a cone $C$ such that every
point $xinoverlineOmega$ is the vertex of a cone $C_x$ congruent to $C$
and contained in $Omega$. Hence, if you consider the cone $C_x_0$, you
can find $n$ linearly independent directions $nu_1,ldots,nu_n$ such
that the segments $x_0+tnu_i$, $tinlbrack0,h]$ are contained in the
cone $C_x_0$, where $h>0$. If you consider the system of $n$ equations
$$
fracpartial upartialnu_i(x_0)=Du(x_0)cdotnu_i,
$$

in the $n$ unknowns $fracpartial upartial x_i(x_0)$, you have that
the determinant is different from zero since the vectors are linearly
independent. Hence, you can write
$$
fracpartial upartial x_i(x_0)=sum_j=1^nc_i,jfracpartial
upartialnu_j(x_0),
$$

where the numbers $c_i,j$ depent only on the directions $nu_1,ldots
,nu_n$
.



Along each segment $S_i=x_0+tnu_i$, $tinlbrack0,h]$ you can apply
your inequality for $n=1$ to the function $g_i(t):=u(x_0+tnu_i)$,
$tinlbrack0,h]$.



Now you have to prove that the coefficients $c_i,j$ depend only on $Omega$.
I have to think about this, but if you rotate the cone, your new directions
are $Rnu_1,ldots,Rnu_n$, where $R$ is your rotation, so the determinant
should not change.






share|cite|improve this answer









$endgroup$



Since $Omega$ is bounded, its closure its compact. Also since $uin
C^1,alpha(overlineOmega)$
, you have that $Du$ is continuous. Hence
there exists $x_0inoverlineOmega$ such that
$$
|Du(x_0)|=max_xinoverlineOmega|Du(x)|.
$$

In particular, $u$ is differentiable $x_0$. Thus,
$$
fracpartial upartialnu(x_0)=Du(x_0)cdotnu,
$$

where $fracpartial upartialnu$ is a directional derivative in an
admissible direction $nuinmathbbR^n$, with $|nu|=1$. Now since
$partialOmega$ is of class $C^1$, there is a cone $C$ such that every
point $xinoverlineOmega$ is the vertex of a cone $C_x$ congruent to $C$
and contained in $Omega$. Hence, if you consider the cone $C_x_0$, you
can find $n$ linearly independent directions $nu_1,ldots,nu_n$ such
that the segments $x_0+tnu_i$, $tinlbrack0,h]$ are contained in the
cone $C_x_0$, where $h>0$. If you consider the system of $n$ equations
$$
fracpartial upartialnu_i(x_0)=Du(x_0)cdotnu_i,
$$

in the $n$ unknowns $fracpartial upartial x_i(x_0)$, you have that
the determinant is different from zero since the vectors are linearly
independent. Hence, you can write
$$
fracpartial upartial x_i(x_0)=sum_j=1^nc_i,jfracpartial
upartialnu_j(x_0),
$$

where the numbers $c_i,j$ depent only on the directions $nu_1,ldots
,nu_n$
.



Along each segment $S_i=x_0+tnu_i$, $tinlbrack0,h]$ you can apply
your inequality for $n=1$ to the function $g_i(t):=u(x_0+tnu_i)$,
$tinlbrack0,h]$.



Now you have to prove that the coefficients $c_i,j$ depend only on $Omega$.
I have to think about this, but if you rotate the cone, your new directions
are $Rnu_1,ldots,Rnu_n$, where $R$ is your rotation, so the determinant
should not change.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 30 at 15:30









Gio67Gio67

12.7k1627




12.7k1627











  • $begingroup$
    Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
    $endgroup$
    – mudok
    Mar 30 at 15:56










  • $begingroup$
    yes, you are correct
    $endgroup$
    – Gio67
    Mar 30 at 16:08










  • $begingroup$
    one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
    $endgroup$
    – mudok
    Mar 30 at 17:11










  • $begingroup$
    up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
    $endgroup$
    – Gio67
    2 days ago











  • $begingroup$
    $C^1$ boundary imply uniform cone property or only cone property?
    $endgroup$
    – mudok
    2 days ago
















  • $begingroup$
    Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
    $endgroup$
    – mudok
    Mar 30 at 15:56










  • $begingroup$
    yes, you are correct
    $endgroup$
    – Gio67
    Mar 30 at 16:08










  • $begingroup$
    one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
    $endgroup$
    – mudok
    Mar 30 at 17:11










  • $begingroup$
    up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
    $endgroup$
    – Gio67
    2 days ago











  • $begingroup$
    $C^1$ boundary imply uniform cone property or only cone property?
    $endgroup$
    – mudok
    2 days ago















$begingroup$
Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
$endgroup$
– mudok
Mar 30 at 15:56




$begingroup$
Very nice argument. What you essentially use is the interior cone property for $C^1$ domain. Which escaped my mind. I also think your $c_i,j$ dependence only on domain since it's come from the linear independent direction vectors depending on domain. Am I correct?
$endgroup$
– mudok
Mar 30 at 15:56












$begingroup$
yes, you are correct
$endgroup$
– Gio67
Mar 30 at 16:08




$begingroup$
yes, you are correct
$endgroup$
– Gio67
Mar 30 at 16:08












$begingroup$
one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
$endgroup$
– mudok
Mar 30 at 17:11




$begingroup$
one question : you say " a cone Cx congruent to C and contained in Ω" why congruent?
$endgroup$
– mudok
Mar 30 at 17:11












$begingroup$
up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
$endgroup$
– Gio67
2 days ago





$begingroup$
up to a translation and a rotation. And I should have said contained in the closure of $Omega$. You will need to rotate the cone.
$endgroup$
– Gio67
2 days ago













$begingroup$
$C^1$ boundary imply uniform cone property or only cone property?
$endgroup$
– mudok
2 days ago




$begingroup$
$C^1$ boundary imply uniform cone property or only cone property?
$endgroup$
– mudok
2 days ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160154%2finterpolation-inequality-for-holder-continuous-functions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu