A proof that there is no prime number in the form $4k-1$ that is congruent to 3 modulo 4. [on hold]Do there exist two primes $p<q$ such that $p^n-1mid q^n-1$ for infinitely many $n$?Proving that there exist infinitely many primes of the form $mn+1$.How do I show that a prime that is less than $n$, is not a prime factor of $n$?Find all positive integers $n$ such that $frac2^n-1+1n$ is integer. Where I'm wrong?Dirichlet theorem on primes premiseProve any odd square cannot be of the form $4n+3$Is there $n geq 2$ such that $1^1 + 2^2 + dots + n^n$ is a perfect square?Is there/can there be a model-theoretic proof of this theorem of arithmetic ?Existence of a non-square integer $L$ such that $L$ is a quadratic residue modulo $p^n$ for all $n$Prove a case of Dirichlet's Theorem: that there are infinity many primes of the form $8k+1$

Is this draw by repetition?

How can I deal with my CEO asking me to hire someone with a higher salary than me, a co-founder?

Getting extremely large arrows with tikzcd

What are the G forces leaving Earth orbit?

Could the museum Saturn V's be refitted for one more flight?

How to prevent "they're falling in love" trope

Does int main() need a declaration on C++?

Is "/bin/[.exe" a legitimate file? [Cygwin, Windows 10]

Do Iron Man suits sport waste management systems?

Mathematica command that allows it to read my intentions

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

Pact of Blade Warlock with Dancing Blade

Finitely generated matrix groups whose eigenvalues are all algebraic

In the UK, is it possible to get a referendum by a court decision?

Forgetting the musical notes while performing in concert

Did 'Cinema Songs' exist during Hiranyakshipu's time?

How can I prove that a state of equilibrium is unstable?

What is an equivalently powerful replacement spell for Yuan-Ti's Suggestion spell?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

Label inside tikzcd square

How do I exit BASH while loop using modulus operator?

How to install cross-compiler on Ubuntu 18.04?

How can saying a song's name be a copyright violation?

What exactly is ineptocracy?



A proof that there is no prime number in the form $4k-1$ that is congruent to 3 modulo 4. [on hold]


Do there exist two primes $p<q$ such that $p^n-1mid q^n-1$ for infinitely many $n$?Proving that there exist infinitely many primes of the form $mn+1$.How do I show that a prime that is less than $n$, is not a prime factor of $n$?Find all positive integers $n$ such that $frac2^n-1+1n$ is integer. Where I'm wrong?Dirichlet theorem on primes premiseProve any odd square cannot be of the form $4n+3$Is there $n geq 2$ such that $1^1 + 2^2 + dots + n^n$ is a perfect square?Is there/can there be a model-theoretic proof of this theorem of arithmetic ?Existence of a non-square integer $L$ such that $L$ is a quadratic residue modulo $p^n$ for all $n$Prove a case of Dirichlet's Theorem: that there are infinity many primes of the form $8k+1$













-2












$begingroup$


This is my first proof ever. I realize this might be mistaken, which is why I need your help to perfect it in order for me to learn and become better at proving mathematical statements.



A proof that there is no prime number in the form $4k-1$ that is congruent to 3 modulo 4.



The statement $4k-1 equiv 3 mod4$ can be rewriteen as $4k-4 = 4m$ where $m$ is any integer $in mathbbZ$.



Then :
$$4k-1-3 = 4m$$ $$4k - 4 = 4m$$ $$(k-1)=m$$ $$k = m+1$$
Plugging $k$ back, we obtain
$$ 4k-1 equiv 3 mod4$$ $$4m-3 equiv 3 mod4$$ $$4m-6 = 4k$$ ($kinmathbbZ$) $$2n-3 = 2k$$



We arrive at a contradiction.



  • I am unsure if this is correct for only primes or for all integer k.









share|cite|improve this question









New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by Dietrich Burde, Lord Shark the Unknown, Eevee Trainer, Cesareo, Leucippus Mar 29 at 5:45


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • 6




    $begingroup$
    Already the title claim is false. Take $k=1$ and $p=3$.
    $endgroup$
    – Dietrich Burde
    Mar 28 at 15:19







  • 1




    $begingroup$
    @DietrichBurde Too damn fast, I'm always halfway done typing when you have your comment out. P.S. to OP: Any number of the form $4k-1$ is congruent to $3pmod 4$.
    $endgroup$
    – Don Thousand
    Mar 28 at 15:20











  • $begingroup$
    Note also that any integer that can be expressed as $n=4k -1$ has $n equiv -1 equiv 3 pmod 4$.; the conditions are redundant.
    $endgroup$
    – Brian
    Mar 28 at 15:22










  • $begingroup$
    Every number of the form $4k-1$ is congruent to $3 mod 4$: $4k-1equiv -1 mod 4; textand -1equiv 3 mod 4$
    $endgroup$
    – Keith Backman
    Mar 28 at 15:22






  • 1




    $begingroup$
    @Yanior Weg: Your tag edits are at best in tension with the OP's intentions, esp. the "fake proofs" tag. Please review the Question and input from the OP carefully before making further edits.
    $endgroup$
    – hardmath
    Mar 28 at 15:26















-2












$begingroup$


This is my first proof ever. I realize this might be mistaken, which is why I need your help to perfect it in order for me to learn and become better at proving mathematical statements.



A proof that there is no prime number in the form $4k-1$ that is congruent to 3 modulo 4.



The statement $4k-1 equiv 3 mod4$ can be rewriteen as $4k-4 = 4m$ where $m$ is any integer $in mathbbZ$.



Then :
$$4k-1-3 = 4m$$ $$4k - 4 = 4m$$ $$(k-1)=m$$ $$k = m+1$$
Plugging $k$ back, we obtain
$$ 4k-1 equiv 3 mod4$$ $$4m-3 equiv 3 mod4$$ $$4m-6 = 4k$$ ($kinmathbbZ$) $$2n-3 = 2k$$



We arrive at a contradiction.



  • I am unsure if this is correct for only primes or for all integer k.









share|cite|improve this question









New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by Dietrich Burde, Lord Shark the Unknown, Eevee Trainer, Cesareo, Leucippus Mar 29 at 5:45


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • 6




    $begingroup$
    Already the title claim is false. Take $k=1$ and $p=3$.
    $endgroup$
    – Dietrich Burde
    Mar 28 at 15:19







  • 1




    $begingroup$
    @DietrichBurde Too damn fast, I'm always halfway done typing when you have your comment out. P.S. to OP: Any number of the form $4k-1$ is congruent to $3pmod 4$.
    $endgroup$
    – Don Thousand
    Mar 28 at 15:20











  • $begingroup$
    Note also that any integer that can be expressed as $n=4k -1$ has $n equiv -1 equiv 3 pmod 4$.; the conditions are redundant.
    $endgroup$
    – Brian
    Mar 28 at 15:22










  • $begingroup$
    Every number of the form $4k-1$ is congruent to $3 mod 4$: $4k-1equiv -1 mod 4; textand -1equiv 3 mod 4$
    $endgroup$
    – Keith Backman
    Mar 28 at 15:22






  • 1




    $begingroup$
    @Yanior Weg: Your tag edits are at best in tension with the OP's intentions, esp. the "fake proofs" tag. Please review the Question and input from the OP carefully before making further edits.
    $endgroup$
    – hardmath
    Mar 28 at 15:26













-2












-2








-2





$begingroup$


This is my first proof ever. I realize this might be mistaken, which is why I need your help to perfect it in order for me to learn and become better at proving mathematical statements.



A proof that there is no prime number in the form $4k-1$ that is congruent to 3 modulo 4.



The statement $4k-1 equiv 3 mod4$ can be rewriteen as $4k-4 = 4m$ where $m$ is any integer $in mathbbZ$.



Then :
$$4k-1-3 = 4m$$ $$4k - 4 = 4m$$ $$(k-1)=m$$ $$k = m+1$$
Plugging $k$ back, we obtain
$$ 4k-1 equiv 3 mod4$$ $$4m-3 equiv 3 mod4$$ $$4m-6 = 4k$$ ($kinmathbbZ$) $$2n-3 = 2k$$



We arrive at a contradiction.



  • I am unsure if this is correct for only primes or for all integer k.









share|cite|improve this question









New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




This is my first proof ever. I realize this might be mistaken, which is why I need your help to perfect it in order for me to learn and become better at proving mathematical statements.



A proof that there is no prime number in the form $4k-1$ that is congruent to 3 modulo 4.



The statement $4k-1 equiv 3 mod4$ can be rewriteen as $4k-4 = 4m$ where $m$ is any integer $in mathbbZ$.



Then :
$$4k-1-3 = 4m$$ $$4k - 4 = 4m$$ $$(k-1)=m$$ $$k = m+1$$
Plugging $k$ back, we obtain
$$ 4k-1 equiv 3 mod4$$ $$4m-3 equiv 3 mod4$$ $$4m-6 = 4k$$ ($kinmathbbZ$) $$2n-3 = 2k$$



We arrive at a contradiction.



  • I am unsure if this is correct for only primes or for all integer k.






number-theory proof-verification






share|cite|improve this question









New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Mar 28 at 15:24









hardmath

29.3k953101




29.3k953101






New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Mar 28 at 15:17









user69264user69264

1




1




New contributor




user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






user69264 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as unclear what you're asking by Dietrich Burde, Lord Shark the Unknown, Eevee Trainer, Cesareo, Leucippus Mar 29 at 5:45


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









put on hold as unclear what you're asking by Dietrich Burde, Lord Shark the Unknown, Eevee Trainer, Cesareo, Leucippus Mar 29 at 5:45


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









  • 6




    $begingroup$
    Already the title claim is false. Take $k=1$ and $p=3$.
    $endgroup$
    – Dietrich Burde
    Mar 28 at 15:19







  • 1




    $begingroup$
    @DietrichBurde Too damn fast, I'm always halfway done typing when you have your comment out. P.S. to OP: Any number of the form $4k-1$ is congruent to $3pmod 4$.
    $endgroup$
    – Don Thousand
    Mar 28 at 15:20











  • $begingroup$
    Note also that any integer that can be expressed as $n=4k -1$ has $n equiv -1 equiv 3 pmod 4$.; the conditions are redundant.
    $endgroup$
    – Brian
    Mar 28 at 15:22










  • $begingroup$
    Every number of the form $4k-1$ is congruent to $3 mod 4$: $4k-1equiv -1 mod 4; textand -1equiv 3 mod 4$
    $endgroup$
    – Keith Backman
    Mar 28 at 15:22






  • 1




    $begingroup$
    @Yanior Weg: Your tag edits are at best in tension with the OP's intentions, esp. the "fake proofs" tag. Please review the Question and input from the OP carefully before making further edits.
    $endgroup$
    – hardmath
    Mar 28 at 15:26












  • 6




    $begingroup$
    Already the title claim is false. Take $k=1$ and $p=3$.
    $endgroup$
    – Dietrich Burde
    Mar 28 at 15:19







  • 1




    $begingroup$
    @DietrichBurde Too damn fast, I'm always halfway done typing when you have your comment out. P.S. to OP: Any number of the form $4k-1$ is congruent to $3pmod 4$.
    $endgroup$
    – Don Thousand
    Mar 28 at 15:20











  • $begingroup$
    Note also that any integer that can be expressed as $n=4k -1$ has $n equiv -1 equiv 3 pmod 4$.; the conditions are redundant.
    $endgroup$
    – Brian
    Mar 28 at 15:22










  • $begingroup$
    Every number of the form $4k-1$ is congruent to $3 mod 4$: $4k-1equiv -1 mod 4; textand -1equiv 3 mod 4$
    $endgroup$
    – Keith Backman
    Mar 28 at 15:22






  • 1




    $begingroup$
    @Yanior Weg: Your tag edits are at best in tension with the OP's intentions, esp. the "fake proofs" tag. Please review the Question and input from the OP carefully before making further edits.
    $endgroup$
    – hardmath
    Mar 28 at 15:26







6




6




$begingroup$
Already the title claim is false. Take $k=1$ and $p=3$.
$endgroup$
– Dietrich Burde
Mar 28 at 15:19





$begingroup$
Already the title claim is false. Take $k=1$ and $p=3$.
$endgroup$
– Dietrich Burde
Mar 28 at 15:19





1




1




$begingroup$
@DietrichBurde Too damn fast, I'm always halfway done typing when you have your comment out. P.S. to OP: Any number of the form $4k-1$ is congruent to $3pmod 4$.
$endgroup$
– Don Thousand
Mar 28 at 15:20





$begingroup$
@DietrichBurde Too damn fast, I'm always halfway done typing when you have your comment out. P.S. to OP: Any number of the form $4k-1$ is congruent to $3pmod 4$.
$endgroup$
– Don Thousand
Mar 28 at 15:20













$begingroup$
Note also that any integer that can be expressed as $n=4k -1$ has $n equiv -1 equiv 3 pmod 4$.; the conditions are redundant.
$endgroup$
– Brian
Mar 28 at 15:22




$begingroup$
Note also that any integer that can be expressed as $n=4k -1$ has $n equiv -1 equiv 3 pmod 4$.; the conditions are redundant.
$endgroup$
– Brian
Mar 28 at 15:22












$begingroup$
Every number of the form $4k-1$ is congruent to $3 mod 4$: $4k-1equiv -1 mod 4; textand -1equiv 3 mod 4$
$endgroup$
– Keith Backman
Mar 28 at 15:22




$begingroup$
Every number of the form $4k-1$ is congruent to $3 mod 4$: $4k-1equiv -1 mod 4; textand -1equiv 3 mod 4$
$endgroup$
– Keith Backman
Mar 28 at 15:22




1




1




$begingroup$
@Yanior Weg: Your tag edits are at best in tension with the OP's intentions, esp. the "fake proofs" tag. Please review the Question and input from the OP carefully before making further edits.
$endgroup$
– hardmath
Mar 28 at 15:26




$begingroup$
@Yanior Weg: Your tag edits are at best in tension with the OP's intentions, esp. the "fake proofs" tag. Please review the Question and input from the OP carefully before making further edits.
$endgroup$
– hardmath
Mar 28 at 15:26










2 Answers
2






active

oldest

votes


















0












$begingroup$

You have stated the question incorrectly. As stated, what you want proven is just false. For example, when $k=2$, there is a prime number $7=4cdot 2-1$ and $7$ is congruent to 3 mod 4.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    There are infinitely many prime numbers of the form $4k-1.$ Your question doesn't make any sense.






    share|cite|improve this answer









    $endgroup$



















      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      You have stated the question incorrectly. As stated, what you want proven is just false. For example, when $k=2$, there is a prime number $7=4cdot 2-1$ and $7$ is congruent to 3 mod 4.






      share|cite|improve this answer









      $endgroup$

















        0












        $begingroup$

        You have stated the question incorrectly. As stated, what you want proven is just false. For example, when $k=2$, there is a prime number $7=4cdot 2-1$ and $7$ is congruent to 3 mod 4.






        share|cite|improve this answer









        $endgroup$















          0












          0








          0





          $begingroup$

          You have stated the question incorrectly. As stated, what you want proven is just false. For example, when $k=2$, there is a prime number $7=4cdot 2-1$ and $7$ is congruent to 3 mod 4.






          share|cite|improve this answer









          $endgroup$



          You have stated the question incorrectly. As stated, what you want proven is just false. For example, when $k=2$, there is a prime number $7=4cdot 2-1$ and $7$ is congruent to 3 mod 4.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 28 at 15:19









          Mark FischlerMark Fischler

          33.9k12552




          33.9k12552





















              0












              $begingroup$

              There are infinitely many prime numbers of the form $4k-1.$ Your question doesn't make any sense.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                There are infinitely many prime numbers of the form $4k-1.$ Your question doesn't make any sense.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  There are infinitely many prime numbers of the form $4k-1.$ Your question doesn't make any sense.






                  share|cite|improve this answer









                  $endgroup$



                  There are infinitely many prime numbers of the form $4k-1.$ Your question doesn't make any sense.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 28 at 15:21









                  Dbchatto67Dbchatto67

                  2,445522




                  2,445522













                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu