Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives? The 2019 Stack Overflow Developer Survey Results Are InDifference between $partial$ and $nabla$ in general relativityMetric tensor in special and general relativityGeneral relativity from helicity 2 massless field theory by using Deser's argumentsProblem in General Relativity (metric tensor covariant derivative / indexes)Motivation for covariant derivative axioms in the context of General RelativityWhat is the motivation from Physics for the Levi-Civita connection on GR?Regarding $T^munu;_mu=0$ in general relativityOn covariant derivativeChristoffel symbol derivation in book by WaldWhen can we raise lower indices on “nontensors” as described in Dirac's book *General Theory of Relativity*?

Should I use my personal or workplace e-mail when registering to external websites for work purpose?

Why do some words that are not inflected have an umlaut?

What does "sndry explns" mean in one of the Hitchhiker's guide books?

Limit the amount of RAM Mathematica may access?

How was Skylab's orbit inclination chosen?

Potential by Assembling Charges

What tool would a Roman-age civilization have to grind silver and other metals into dust?

How come people say “Would of”?

Geography at the pixel level

A poker game description that does not feel gimmicky

Time travel alters history but people keep saying nothing's changed

What is the best strategy for white in this position?

Lethal sonic weapons

Patience, young "Padovan"

How is radar separation assured between primary and secondary targets?

Can the Protection from Evil and Good spell be used on the caster?

Does light intensity oscillate really fast since it is a wave?

Understanding the implication of what "well-defined" means for the operation in quotient group

What spell level should this homebrew After-Image spell be?

Falsification in Math vs Science

Why is the maximum length of OpenWrt’s root password 8 characters?

I see my dog run

What is the use of option -o in the useradd command?

Is an up-to-date browser secure on an out-of-date OS?



Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?



The 2019 Stack Overflow Developer Survey Results Are InDifference between $partial$ and $nabla$ in general relativityMetric tensor in special and general relativityGeneral relativity from helicity 2 massless field theory by using Deser's argumentsProblem in General Relativity (metric tensor covariant derivative / indexes)Motivation for covariant derivative axioms in the context of General RelativityWhat is the motivation from Physics for the Levi-Civita connection on GR?Regarding $T^munu;_mu=0$ in general relativityOn covariant derivativeChristoffel symbol derivation in book by WaldWhen can we raise lower indices on “nontensors” as described in Dirac's book *General Theory of Relativity*?










14












$begingroup$


I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?










share|cite|improve this question











$endgroup$
















    14












    $begingroup$


    I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



    I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?










    share|cite|improve this question











    $endgroup$














      14












      14








      14


      2



      $begingroup$


      I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



      I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?










      share|cite|improve this question











      $endgroup$




      I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.



      I understand that covariant derivatives become partial derivatives in Minkowski space however is the reverse unique? Is there no other tensor operation which becomes a partial derivative / if so why do we not mention them?







      general-relativity special-relativity differential-geometry tensor-calculus differentiation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 15:08









      Ben Crowell

      54k6165313




      54k6165313










      asked Mar 30 at 11:36









      Toby PeterkenToby Peterken

      452216




      452216




















          3 Answers
          3






          active

          oldest

          votes


















          14












          $begingroup$

          Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



          For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



          $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



          whereas in Minkowski the same equation reads:



          $$partial_nu partial^nu A^mu = -j^mu$$



          If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






          share|cite|improve this answer











          $endgroup$




















            6












            $begingroup$

            You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



            There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






            share|cite|improve this answer









            $endgroup$




















              1












              $begingroup$


              I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




              Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



              Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



              But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "151"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: false,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: null,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469527%2fwhy-when-going-from-special-to-general-relativity-do-we-just-replace-partial-d%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                14












                $begingroup$

                Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                whereas in Minkowski the same equation reads:



                $$partial_nu partial^nu A^mu = -j^mu$$



                If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






                share|cite|improve this answer











                $endgroup$

















                  14












                  $begingroup$

                  Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                  For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                  $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                  whereas in Minkowski the same equation reads:



                  $$partial_nu partial^nu A^mu = -j^mu$$



                  If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






                  share|cite|improve this answer











                  $endgroup$















                    14












                    14








                    14





                    $begingroup$

                    Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                    For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                    $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                    whereas in Minkowski the same equation reads:



                    $$partial_nu partial^nu A^mu = -j^mu$$



                    If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).






                    share|cite|improve this answer











                    $endgroup$



                    Transforming partial derivatives to covariant derivatives when going from Minkowski to a general spacetime is just a rule of thumb, and should not be applied carelessly.



                    For example, when studying electromagnetism in the Lorenz gauge $(nabla_mu A^mu =0)$, working from first principles, one can show that the inhomogeneous wave equation reads:



                    $$nabla_nu nabla^nu A^mu - R^mu_,,nu A^nu = -j^mu$$



                    whereas in Minkowski the same equation reads:



                    $$partial_nu partial^nu A^mu = -j^mu$$



                    If we used $partialrightarrownabla$, we would not find the contribution of the curvature term. Although in general the $partialrightarrownabla$ might work, to be safe you should try to derive physical rules using a covariant approach (e.g. from an action principle).







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Mar 30 at 12:35









                    DanielC

                    1,7181919




                    1,7181919










                    answered Mar 30 at 12:15









                    Filipe MiguelFilipe Miguel

                    394112




                    394112





















                        6












                        $begingroup$

                        You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                        There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






                        share|cite|improve this answer









                        $endgroup$

















                          6












                          $begingroup$

                          You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                          There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






                          share|cite|improve this answer









                          $endgroup$















                            6












                            6








                            6





                            $begingroup$

                            You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                            There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?






                            share|cite|improve this answer









                            $endgroup$



                            You are right that it is not unique. The rule you mention is called minimal coupling. It is similar to electromagnetism when we replace $p_mu$ by $p_mu - eA_mu$ in our first-order equations. This is the simplest approach one could take, in which you just add a term describing, e.g. electromagnetism, to the action, and then it just couples to gravity through the metric in the volume element.



                            There are other ways of doing so by contracting the Ricci tensor with the field strength tensor, for instance, but these are non-minimal. We make choices like these all the time, even in choosing the form of the connection in the covariant derivative. So the answer in the end is that this minimal approach agrees with experiment to their current accuracies, so why complicate things?







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 30 at 12:27









                            gmaroccogmarocco

                            1415




                            1415





















                                1












                                $begingroup$


                                I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$


                                  I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                  Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                  Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                  But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






                                  share|cite|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$


                                    I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                    Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                    Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                    But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.






                                    share|cite|improve this answer









                                    $endgroup$




                                    I've come across several references to the idea that to upgrade a law of physics to general relativity all you have to do is replace any partial derivatives with covariant derivatives.




                                    Maybe but IMHO it's a wrong idea. Covariant derivatives are needed in SR too, if you wish to use arbitrary coordinates. Which is completely allowed even though generally inconvenient. But there are exceptions - see e.g. Rindler's coordinates.



                                    Of course in a curved spacetime you're obliged to use coordinates where metric takes a complicated form, simply because a coordinate system which diagonalizes the metric tensor to constant components in a finite region doesn't exist. Then covariant derivative is an imperative tool.



                                    But there's no warranty that it's a sufficient method to obtain the right physical laws in GR. @DanielC already gave a classical example.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 30 at 20:44









                                    Elio FabriElio Fabri

                                    3,5951214




                                    3,5951214



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Physics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469527%2fwhy-when-going-from-special-to-general-relativity-do-we-just-replace-partial-d%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                        Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                                        Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε