$Gammamodelsphi$ if and only if $Gamma,negphimodelspsilandnegpsi$ The 2019 Stack Overflow Developer Survey Results Are InShow that $(phi rightarrow psi), (phi rightarrow neg psi) vdash neg phi$Is it correct that If $mathcal A $ is a model of $Gamma $, and if $Gamma models psi$ then $mathcal A models psi $?Show that $Gamma cup neg phi$ is satisfiable if and only if $Gammanot models phi$How to show that if $neg b = a land d$ then $a land neg b = neg b$ and $b land neg a = neg a$If $models neg phi$, then $models phi^circ$, where $phi^circ$ is the “semi-dual” of $phi$Prove that a theory $Gamma$ is consistent if and only if there is a structure $M$ so that $M$ $models$ $Gamma$.not always $A models phi$ or $A models neg phi$ exampleIf $Gamma$ is consistent and $Gammanotvdashphi$, then $Gammacupnegphi$ is also consistent. Why?Is there any way to simplify $(Aland B land C) lor (neg A land neg B land neg C)$?Show that $vdash Gamma cup psi$ implies $vdash Gamma cup psi'$ where $psi'$ is $psi$ with one of its bound variables renamed.

How to deal with fear of taking dependencies

How come people say “Would of”?

aging parents with no investments

What tool would a Roman-age civilization have to grind silver and other metals into dust?

Where does the "burst of radiance" from Holy Weapon originate?

Can't find the latex code for the ⍎ (down tack jot) symbol

What do the Banks children have against barley water?

Confusion about non-derivable continuous functions

Does it makes sense to buy a new cycle to learn riding?

Why don't Unix/Linux systems traverse through directories until they find the required version of a linked library?

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Why could you hear an Amstrad CPC working?

Unbreakable Formation vs. Cry of the Carnarium

A poker game description that does not feel gimmicky

Patience, young "Padovan"

Is bread bad for ducks?

Inversion Puzzle

Are there any other methods to apply to solving simultaneous equations?

Output the Arecibo Message

Spanish for "widget"

"What time...?" or "At what time...?" - what is more grammatically correct?

How can I create a character who can assume the widest possible range of creature sizes?

Does a dangling wire really electrocute me if I'm standing in water?

Why can Shazam do this?



$Gammamodelsphi$ if and only if $Gamma,negphimodelspsilandnegpsi$



The 2019 Stack Overflow Developer Survey Results Are InShow that $(phi rightarrow psi), (phi rightarrow neg psi) vdash neg phi$Is it correct that If $mathcal A $ is a model of $Gamma $, and if $Gamma models psi$ then $mathcal A models psi $?Show that $Gamma cup neg phi$ is satisfiable if and only if $Gammanot models phi$How to show that if $neg b = a land d$ then $a land neg b = neg b$ and $b land neg a = neg a$If $models neg phi$, then $models phi^circ$, where $phi^circ$ is the “semi-dual” of $phi$Prove that a theory $Gamma$ is consistent if and only if there is a structure $M$ so that $M$ $models$ $Gamma$.not always $A models phi$ or $A models neg phi$ exampleIf $Gamma$ is consistent and $Gammanotvdashphi$, then $Gammacupnegphi$ is also consistent. Why?Is there any way to simplify $(Aland B land C) lor (neg A land neg B land neg C)$?Show that $vdash Gamma cup psi$ implies $vdash Gamma cup psi'$ where $psi'$ is $psi$ with one of its bound variables renamed.










1












$begingroup$


Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.










      share|cite|improve this question











      $endgroup$




      Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.







      logic first-order-logic






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 11:09









      blub

      3,299929




      3,299929










      asked Mar 30 at 10:50









      Pedro SantosPedro Santos

      16810




      16810




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168146%2fgamma-models-phi-if-and-only-if-gamma-neg-phi-models-psi-land-neg-psi%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00















          1












          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00













          1












          1








          1





          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$



          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 30 at 11:02

























          answered Mar 30 at 10:57









          blubblub

          3,299929




          3,299929











          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00
















          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00















          $begingroup$
          Ah yes thats what i meant , yes Thank you my friend !
          $endgroup$
          – Pedro Santos
          Mar 30 at 11:00




          $begingroup$
          Ah yes thats what i meant , yes Thank you my friend !
          $endgroup$
          – Pedro Santos
          Mar 30 at 11:00

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168146%2fgamma-models-phi-if-and-only-if-gamma-neg-phi-models-psi-land-neg-psi%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

          Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε