Skip to main content

Kategory:Persoan stoarn yn 2000 Siden yn de kategory "Persoan stoarn yn 2000"Navigaasjemenu

2000Persoan stoarn yn de 20e iuw














Kategory:Persoan stoarn yn 2000




Ut Wikipedy






Jump to navigation
Jump to search








Siden yn de kategory "Persoan stoarn yn 2000"


De folgjende 35 siden binne yn dizze kategory, fan yn totaal 35.




A


  • Pier Alma


B


  • Klaas Beuker

  • Jan Willem Bezemer

  • Big Pun

  • Fokje Bleeker-Dijkstra

  • Halbe Brandsma



F


  • Lolo Ferrari

  • Coen Flink



G


  • John Gielgud

  • Roxy Gordon

  • Nol Gregoor

  • Alec Guinness



H


  • Piet Hendriks

  • Arp Hiemstra

  • G.B.J. Hiltermann

  • Frâns Holwerda

  • F.B. Hotz

  • Jopie Huisman

  • Hendrik C. van de Hulst



K


  • Takashi Kano


L


  • D.C. Lewis

  • Gauke Loopstra



M


  • Teruki Miyamoto

  • Wout Muller



N


  • Hirokazu Ninomiya

  • Ad Noyons



P


  • Hugo Pos


S


  • Peter Sterkenburg


T


  • Arthur Troop


U


  • Rayner Unwin


V


  • Enric Valor i Vives


W


  • Edzo Hendrik Waterbolk

  • Herman van Wissen

  • Ruud de Wolff

  • Adam van der Woude






Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Kategory:Persoan_stoarn_yn_2000&oldid=839135"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.000","walltime":"0.002","ppvisitednodes":"value":1,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":0,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":1,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 0.000 1 -total"],"cachereport":"origin":"mw1337","timestamp":"20190312074537","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":103,"wgHostname":"mw1258"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε