Using Rolle's theorem to show $e^x=1+x$ has only one real root The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraProving number of roots of a function using Rolle's theoremUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Proof polynomial has only one real root.prove to have at least one real root by Rolle's theoremProof using Rolle's theoremUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremApplication of Derivatives (Rolle's Theorem?)Prove, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root

Am I ethically obligated to go into work on an off day if the reason is sudden?

Didn't get enough time to take a Coding Test - what to do now?

What information about me do stores get via my credit card?

University's motivation for having tenure-track positions

Keeping a retro style to sci-fi spaceships?

Do warforged have souls?

Variable with quotation marks "$()"

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Are spiders unable to hurt humans, especially very small spiders?

Make it rain characters

Word for: a synonym with a positive connotation?

What do I do when my TA workload is more than expected?

How to determine omitted units in a publication

Can each chord in a progression create its own key?

Simulating Exploding Dice

Single author papers against my advisor's will?

Python - Fishing Simulator

"is" operation returns false even though two objects have same id

Is this wall load bearing? Blueprints and photos attached

Homework question about an engine pulling a train

Can we generate random numbers using irrational numbers like π and e?

Deal with toxic manager when you can't quit

Windows 10: How to Lock (not sleep) laptop on lid close?

What can I do if neighbor is blocking my solar panels intentionally?



Using Rolle's theorem to show $e^x=1+x$ has only one real root



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraProving number of roots of a function using Rolle's theoremUsing the Intermediate Value Theorem and Rolle's theorem to determine number of rootsProve using Rolle's Theorem that an equation has exactly one real solution.Proof polynomial has only one real root.prove to have at least one real root by Rolle's theoremProof using Rolle's theoremUsing Rolle's theorem and IVT, show that $x^4-7x^3+9=0$ has exactly $2$ roots.Proving the equation $4x^3+6x^2+5x=-7$ has has only one solution using Rolle's or Lagrange's theoremApplication of Derivatives (Rolle's Theorem?)Prove, without using Rolle's theorem, that a polynomial $f$ with $f'(a) = 0 = f'(b)$ for some $a < b$, has at most one root










3












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 31 at 6:31
















3












$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 31 at 6:31














3












3








3


1



$begingroup$



Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?










share|cite|improve this question











$endgroup$





Applying Rolle's Theorem, prove that the given equation has only one root:
$$e^x=1+x$$




By inspection, we can say that $x=0$ is one root of the equation. But how can we use Rolle's theorem to prove this root is unique?







calculus applications rolles-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 31 at 7:56









YuiTo Cheng

2,4064937




2,4064937










asked Mar 31 at 5:58









pi-πpi-π

3,35021755




3,35021755











  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 31 at 6:31

















  • $begingroup$
    It is $$exp(x)geq 1+x$$ for all real $x$
    $endgroup$
    – Dr. Sonnhard Graubner
    Mar 31 at 6:31
















$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
Mar 31 at 6:31





$begingroup$
It is $$exp(x)geq 1+x$$ for all real $x$
$endgroup$
– Dr. Sonnhard Graubner
Mar 31 at 6:31











1 Answer
1






active

oldest

votes


















7












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – pi-π
    Mar 31 at 6:07










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:09







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – pi-π
    Mar 31 at 6:14






  • 1




    $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:25










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – pi-π
    Mar 31 at 6:28











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-ex-1x-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – pi-π
    Mar 31 at 6:07










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:09







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – pi-π
    Mar 31 at 6:14






  • 1




    $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:25










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – pi-π
    Mar 31 at 6:28















7












$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – pi-π
    Mar 31 at 6:07










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:09







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – pi-π
    Mar 31 at 6:14






  • 1




    $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:25










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – pi-π
    Mar 31 at 6:28













7












7








7





$begingroup$

Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.






share|cite|improve this answer











$endgroup$



Let $f(x) = e^x - 1 - x$, and we observe that $f(0)=0$. $f$ is also obviously continuous and differentiable over the real numbers (if you wish to verify that in detail, you can do that separately).



Suppose there exists a second root $b neq 0$ such that $f(0) = f(b) = 0$. Then there exists some $c in (0,b)$ (or $(b,0)$ if $b<0$) such that $f'(c) = 0$ by Rolle's theorem.



$f'(x) = e^x - 1$, however, which satisfies $f'(x) = 0$ only when $x=0$, which is not in any interval $(0,b)$ (or $(b,0)$).



Thus, since no satisfactory $c$ exists, we conclude the equation only has one real root.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 31 at 6:26

























answered Mar 31 at 6:04









Eevee TrainerEevee Trainer

10.5k31842




10.5k31842











  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – pi-π
    Mar 31 at 6:07










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:09







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – pi-π
    Mar 31 at 6:14






  • 1




    $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:25










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – pi-π
    Mar 31 at 6:28
















  • $begingroup$
    I don't understand the second para.
    $endgroup$
    – pi-π
    Mar 31 at 6:07










  • $begingroup$
    We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:09







  • 1




    $begingroup$
    Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
    $endgroup$
    – pi-π
    Mar 31 at 6:14






  • 1




    $begingroup$
    Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
    $endgroup$
    – Eevee Trainer
    Mar 31 at 6:25










  • $begingroup$
    With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
    $endgroup$
    – pi-π
    Mar 31 at 6:28















$begingroup$
I don't understand the second para.
$endgroup$
– pi-π
Mar 31 at 6:07




$begingroup$
I don't understand the second para.
$endgroup$
– pi-π
Mar 31 at 6:07












$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
Mar 31 at 6:09





$begingroup$
We want to show that there exists no second (unique) root, so we seek a contradiction by supposing it exists. Okay, so if the second root is not unique, it is some real number $b$ that is not equal to our first root, $0$. If $b$ is a root, then we are ensured $f(b) =0$. Coincidentally, $f(b) = f(0)$, which gives us a situation in which Rolle's theorem applies. Then, there exists some point $c$ between $b$ and $0$ such that the derivative of $f$ is equal to zero.
$endgroup$
– Eevee Trainer
Mar 31 at 6:09





1




1




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– pi-π
Mar 31 at 6:14




$begingroup$
Do we not need to check for continuity and differentiability of $f(x)$ in $[0,b]$ and $(0,b)$ respectively before applying Rolle's Theorem?
$endgroup$
– pi-π
Mar 31 at 6:14




1




1




$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
Mar 31 at 6:25




$begingroup$
Yeah, technically you do if you want to be rigorous (and that's a fair point to bring up). Though in this case it's one of those cases where it's "obvious" in the sense that $f$ is obviously continuous and differentiable over $Bbb R$. I suppose whether you want to prove that, or just state it as an obvious thing, depends on the rigor expected of you in your course.
$endgroup$
– Eevee Trainer
Mar 31 at 6:25












$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– pi-π
Mar 31 at 6:28




$begingroup$
With regard to my course, we need to prove those conditions of Rolle's Theorem everytime we are willing to use it.
$endgroup$
– pi-π
Mar 31 at 6:28

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169097%2fusing-rolles-theorem-to-show-ex-1x-has-only-one-real-root%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε