Show that $|Ax|_2^2 = lambda |x|_2^2$ The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Matrix norms involving singular valuesInequality matrix normDoes the spectral norm of a square matrix equal its largest eigenvalue in absolute value?Condition numbers and block matricescharacterization of the solution to a generalized eigenvalue problemProve $(lambda I-A)^-1=sum_i Big(fracv_iu_ilambda-lambda_iBig)$. $u_i, v_i$ are left and right eigenvectors for eigenvalue $lambda_i$Show that a matrix is invertible with norm less than one$A^tto 0$ when its row sum is strictly less than one?Absolute of all eigenvalues are always bounded by maximal singular valueShow that $ lambda leq |A^TA|$.

Why can't wing-mounted spoilers be used to steepen approaches?

Variable with quotation marks "$()"

Are there continuous functions who are the same in an interval but differ in at least one other point?

Do ℕ, mathbbN, BbbN, symbbN effectively differ, and is there a "canonical" specification of the naturals?

Example of compact Riemannian manifold with only one geodesic.

Why can't devices on different VLANs, but on the same subnet, communicate?

What aspect of planet Earth must be changed to prevent the industrial revolution?

What force causes entropy to increase?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

How did passengers keep warm on sail ships?

Simulating Exploding Dice

Could an empire control the whole planet with today's comunication methods?

How to handle characters who are more educated than the author?

different output for groups and groups USERNAME after adding a username to a group

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

Circular reasoning in L'Hopital's rule

Python - Fishing Simulator

Do I have Disadvantage attacking with an off-hand weapon?

How do you keep chess fun when your opponent constantly beats you?

60's-70's movie: home appliances revolting against the owners

Using dividends to reduce short term capital gains?

One-dimensional Japanese puzzle



Show that $|Ax|_2^2 = lambda |x|_2^2$



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Matrix norms involving singular valuesInequality matrix normDoes the spectral norm of a square matrix equal its largest eigenvalue in absolute value?Condition numbers and block matricescharacterization of the solution to a generalized eigenvalue problemProve $(lambda I-A)^-1=sum_i Big(fracv_iu_ilambda-lambda_iBig)$. $u_i, v_i$ are left and right eigenvectors for eigenvalue $lambda_i$Show that a matrix is invertible with norm less than one$A^tto 0$ when its row sum is strictly less than one?Absolute of all eigenvalues are always bounded by maximal singular valueShow that $ lambda leq |A^TA|$.










1












$begingroup$



Let $A in mathbbR^n times n$, let $lambda$ be an eigenvalue of $A^TA$ and $x in mathbbR^n setminus 0$ be the corresponding eigenvector, then show that $$|Ax|_2^2 = lambda |x|_2^2 textand hence lambda geq 0$$




Answer:



Here $||.||_2$ denote matrix $ 2-$norm i.e, $||A||_2=sigma_max (A)=sqrtlambda,$ where $sigma_max$ is the largest singular value of matrix $A$ and $lambda$ is largest eigenvalue of $A^TA$.



Now we have,



$(A^TA)x=lambda x Rightarrow ||(A^TA)x||_2=||lambda x||_2$



How to conclude the proof?



help me.



Since










share|cite|improve this question











$endgroup$











  • $begingroup$
    Your 'answer' is not addressing the question asked. Use $|Ax|^2 = langle Ax, Ax rangle$.
    $endgroup$
    – copper.hat
    Mar 17 at 17:52







  • 1




    $begingroup$
    You've got that wrong. It's $left<Ax,Axright> = left<x, (A^TA)xright>$.
    $endgroup$
    – eyeballfrog
    Mar 17 at 17:56











  • $begingroup$
    @copper.hat, sorry, unfortunate. $||Ax||_2^2=<Ax,Ax>=leftlangle x,(A^TA)x rightrangle=leftlangle x, lambda x rightrangle=lambda <x,x>=lambda ||x||_2^2$
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:03







  • 1




    $begingroup$
    @M.A.SARKAR: You got it!
    $endgroup$
    – copper.hat
    Mar 17 at 18:05










  • $begingroup$
    @copper.hat, How to show that $||A||_2 leq ||A^TA||^1/2$ ? , where $||.||$ is a norm on $mathbbR^n$.
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:17















1












$begingroup$



Let $A in mathbbR^n times n$, let $lambda$ be an eigenvalue of $A^TA$ and $x in mathbbR^n setminus 0$ be the corresponding eigenvector, then show that $$|Ax|_2^2 = lambda |x|_2^2 textand hence lambda geq 0$$




Answer:



Here $||.||_2$ denote matrix $ 2-$norm i.e, $||A||_2=sigma_max (A)=sqrtlambda,$ where $sigma_max$ is the largest singular value of matrix $A$ and $lambda$ is largest eigenvalue of $A^TA$.



Now we have,



$(A^TA)x=lambda x Rightarrow ||(A^TA)x||_2=||lambda x||_2$



How to conclude the proof?



help me.



Since










share|cite|improve this question











$endgroup$











  • $begingroup$
    Your 'answer' is not addressing the question asked. Use $|Ax|^2 = langle Ax, Ax rangle$.
    $endgroup$
    – copper.hat
    Mar 17 at 17:52







  • 1




    $begingroup$
    You've got that wrong. It's $left<Ax,Axright> = left<x, (A^TA)xright>$.
    $endgroup$
    – eyeballfrog
    Mar 17 at 17:56











  • $begingroup$
    @copper.hat, sorry, unfortunate. $||Ax||_2^2=<Ax,Ax>=leftlangle x,(A^TA)x rightrangle=leftlangle x, lambda x rightrangle=lambda <x,x>=lambda ||x||_2^2$
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:03







  • 1




    $begingroup$
    @M.A.SARKAR: You got it!
    $endgroup$
    – copper.hat
    Mar 17 at 18:05










  • $begingroup$
    @copper.hat, How to show that $||A||_2 leq ||A^TA||^1/2$ ? , where $||.||$ is a norm on $mathbbR^n$.
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:17













1












1








1


2



$begingroup$



Let $A in mathbbR^n times n$, let $lambda$ be an eigenvalue of $A^TA$ and $x in mathbbR^n setminus 0$ be the corresponding eigenvector, then show that $$|Ax|_2^2 = lambda |x|_2^2 textand hence lambda geq 0$$




Answer:



Here $||.||_2$ denote matrix $ 2-$norm i.e, $||A||_2=sigma_max (A)=sqrtlambda,$ where $sigma_max$ is the largest singular value of matrix $A$ and $lambda$ is largest eigenvalue of $A^TA$.



Now we have,



$(A^TA)x=lambda x Rightarrow ||(A^TA)x||_2=||lambda x||_2$



How to conclude the proof?



help me.



Since










share|cite|improve this question











$endgroup$





Let $A in mathbbR^n times n$, let $lambda$ be an eigenvalue of $A^TA$ and $x in mathbbR^n setminus 0$ be the corresponding eigenvector, then show that $$|Ax|_2^2 = lambda |x|_2^2 textand hence lambda geq 0$$




Answer:



Here $||.||_2$ denote matrix $ 2-$norm i.e, $||A||_2=sigma_max (A)=sqrtlambda,$ where $sigma_max$ is the largest singular value of matrix $A$ and $lambda$ is largest eigenvalue of $A^TA$.



Now we have,



$(A^TA)x=lambda x Rightarrow ||(A^TA)x||_2=||lambda x||_2$



How to conclude the proof?



help me.



Since







eigenvalues-eigenvectors norm matrix-norms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 31 at 7:41









Rodrigo de Azevedo

13.2k41962




13.2k41962










asked Mar 17 at 17:49









M. A. SARKARM. A. SARKAR

2,5001820




2,5001820











  • $begingroup$
    Your 'answer' is not addressing the question asked. Use $|Ax|^2 = langle Ax, Ax rangle$.
    $endgroup$
    – copper.hat
    Mar 17 at 17:52







  • 1




    $begingroup$
    You've got that wrong. It's $left<Ax,Axright> = left<x, (A^TA)xright>$.
    $endgroup$
    – eyeballfrog
    Mar 17 at 17:56











  • $begingroup$
    @copper.hat, sorry, unfortunate. $||Ax||_2^2=<Ax,Ax>=leftlangle x,(A^TA)x rightrangle=leftlangle x, lambda x rightrangle=lambda <x,x>=lambda ||x||_2^2$
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:03







  • 1




    $begingroup$
    @M.A.SARKAR: You got it!
    $endgroup$
    – copper.hat
    Mar 17 at 18:05










  • $begingroup$
    @copper.hat, How to show that $||A||_2 leq ||A^TA||^1/2$ ? , where $||.||$ is a norm on $mathbbR^n$.
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:17
















  • $begingroup$
    Your 'answer' is not addressing the question asked. Use $|Ax|^2 = langle Ax, Ax rangle$.
    $endgroup$
    – copper.hat
    Mar 17 at 17:52







  • 1




    $begingroup$
    You've got that wrong. It's $left<Ax,Axright> = left<x, (A^TA)xright>$.
    $endgroup$
    – eyeballfrog
    Mar 17 at 17:56











  • $begingroup$
    @copper.hat, sorry, unfortunate. $||Ax||_2^2=<Ax,Ax>=leftlangle x,(A^TA)x rightrangle=leftlangle x, lambda x rightrangle=lambda <x,x>=lambda ||x||_2^2$
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:03







  • 1




    $begingroup$
    @M.A.SARKAR: You got it!
    $endgroup$
    – copper.hat
    Mar 17 at 18:05










  • $begingroup$
    @copper.hat, How to show that $||A||_2 leq ||A^TA||^1/2$ ? , where $||.||$ is a norm on $mathbbR^n$.
    $endgroup$
    – M. A. SARKAR
    Mar 17 at 18:17















$begingroup$
Your 'answer' is not addressing the question asked. Use $|Ax|^2 = langle Ax, Ax rangle$.
$endgroup$
– copper.hat
Mar 17 at 17:52





$begingroup$
Your 'answer' is not addressing the question asked. Use $|Ax|^2 = langle Ax, Ax rangle$.
$endgroup$
– copper.hat
Mar 17 at 17:52





1




1




$begingroup$
You've got that wrong. It's $left<Ax,Axright> = left<x, (A^TA)xright>$.
$endgroup$
– eyeballfrog
Mar 17 at 17:56





$begingroup$
You've got that wrong. It's $left<Ax,Axright> = left<x, (A^TA)xright>$.
$endgroup$
– eyeballfrog
Mar 17 at 17:56













$begingroup$
@copper.hat, sorry, unfortunate. $||Ax||_2^2=<Ax,Ax>=leftlangle x,(A^TA)x rightrangle=leftlangle x, lambda x rightrangle=lambda <x,x>=lambda ||x||_2^2$
$endgroup$
– M. A. SARKAR
Mar 17 at 18:03





$begingroup$
@copper.hat, sorry, unfortunate. $||Ax||_2^2=<Ax,Ax>=leftlangle x,(A^TA)x rightrangle=leftlangle x, lambda x rightrangle=lambda <x,x>=lambda ||x||_2^2$
$endgroup$
– M. A. SARKAR
Mar 17 at 18:03





1




1




$begingroup$
@M.A.SARKAR: You got it!
$endgroup$
– copper.hat
Mar 17 at 18:05




$begingroup$
@M.A.SARKAR: You got it!
$endgroup$
– copper.hat
Mar 17 at 18:05












$begingroup$
@copper.hat, How to show that $||A||_2 leq ||A^TA||^1/2$ ? , where $||.||$ is a norm on $mathbbR^n$.
$endgroup$
– M. A. SARKAR
Mar 17 at 18:17




$begingroup$
@copper.hat, How to show that $||A||_2 leq ||A^TA||^1/2$ ? , where $||.||$ is a norm on $mathbbR^n$.
$endgroup$
– M. A. SARKAR
Mar 17 at 18:17










1 Answer
1






active

oldest

votes


















3












$begingroup$

A simpler proof is that $$||Ax||_2^2$$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151828%2fshow-that-ax-22-lambda-x-22%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    A simpler proof is that $$||Ax||_2^2$$






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      A simpler proof is that $$||Ax||_2^2$$






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        A simpler proof is that $$||Ax||_2^2$$






        share|cite|improve this answer









        $endgroup$



        A simpler proof is that $$||Ax||_2^2$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 17 at 21:05









        Mostafa AyazMostafa Ayaz

        18.1k31040




        18.1k31040



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151828%2fshow-that-ax-22-lambda-x-22%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

            Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε