differential equation - solving a second-order ODE with variable coefficients The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Hunt for exact solutions of second order ordinary differential equations with varying coefficients.advance techniques for converting second-order linear ODEs with rational function coefficients to some known ODE typesSolving a separable 2nd order differential equation (can a similar technique be used)?Solving differential equations with Fourier Transformationsolve a system of linear differential equations with variable coefficientsSolving Second order ODE with variable coefficients?2nd order homogeneous ODESystem of Linear differential equations with variable coefficientsNumerically solving a system of linear 2nd order differential equationsTechniques for solving a general system of First order differential equationsSecond order differential equation with variable coefficients1st order non linear differential equation

Is every episode of "Where are my Pants?" identical?

Can the DM override racial traits?

Mortgage adviser recommends a longer term than necessary combined with overpayments

US Healthcare consultation for visitors

Match Roman Numerals

Make it rain characters

Loose spokes after only a few rides

How did the crowd guess the pentatonic scale in Bobby McFerrin's presentation?

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

Does Parliament need to approve the new Brexit delay to 31 October 2019?

How to handle characters who are more educated than the author?

Word for: a synonym with a positive connotation?

should truth entail possible truth

Do ℕ, mathbbN, BbbN, symbbN effectively differ, and is there a "canonical" specification of the naturals?

"... to apply for a visa" or "... and applied for a visa"?

Do I have Disadvantage attacking with an off-hand weapon?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

One-dimensional Japanese puzzle

Example of compact Riemannian manifold with only one geodesic.

Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?

Button changing its text & action. Good or terrible?

What other Star Trek series did the main TNG cast show up in?

What's the point in a preamp?

Am I ethically obligated to go into work on an off day if the reason is sudden?



differential equation - solving a second-order ODE with variable coefficients



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Hunt for exact solutions of second order ordinary differential equations with varying coefficients.advance techniques for converting second-order linear ODEs with rational function coefficients to some known ODE typesSolving a separable 2nd order differential equation (can a similar technique be used)?Solving differential equations with Fourier Transformationsolve a system of linear differential equations with variable coefficientsSolving Second order ODE with variable coefficients?2nd order homogeneous ODESystem of Linear differential equations with variable coefficientsNumerically solving a system of linear 2nd order differential equationsTechniques for solving a general system of First order differential equationsSecond order differential equation with variable coefficients1st order non linear differential equation










0












$begingroup$


I was analyzing stability for the following system of differential equations:
$$z_1'=z_1+(6+e^-t)z_2$$
$$z_2'=-z_1-4tanh(t)z_2$$
In an effort to check my answer, I attempted to solve the system, but I'm not sure if this can even be accomplished. The following 2nd-order DE is what resulted when I differentiated the first equation above and made the appropriate substitutions:
$$z_1''+left(-1+frace^-t6+e^-t+frac4(6+e^-t)tanh(t)6+e^-tright)z_1'+left(frac-e^-t6+e^-t+6+e^-t-4tanh(t)right)z_1=0.$$
Is there a technique for solving this diff equ? Perhaps my more general question is do we have a strategy for solving 2nd-order linear DEs of the form $z_1''+a(t)z_1'+b(t)z_1=0$ ?



Thanks for your help.










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    I was analyzing stability for the following system of differential equations:
    $$z_1'=z_1+(6+e^-t)z_2$$
    $$z_2'=-z_1-4tanh(t)z_2$$
    In an effort to check my answer, I attempted to solve the system, but I'm not sure if this can even be accomplished. The following 2nd-order DE is what resulted when I differentiated the first equation above and made the appropriate substitutions:
    $$z_1''+left(-1+frace^-t6+e^-t+frac4(6+e^-t)tanh(t)6+e^-tright)z_1'+left(frac-e^-t6+e^-t+6+e^-t-4tanh(t)right)z_1=0.$$
    Is there a technique for solving this diff equ? Perhaps my more general question is do we have a strategy for solving 2nd-order linear DEs of the form $z_1''+a(t)z_1'+b(t)z_1=0$ ?



    Thanks for your help.










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      I was analyzing stability for the following system of differential equations:
      $$z_1'=z_1+(6+e^-t)z_2$$
      $$z_2'=-z_1-4tanh(t)z_2$$
      In an effort to check my answer, I attempted to solve the system, but I'm not sure if this can even be accomplished. The following 2nd-order DE is what resulted when I differentiated the first equation above and made the appropriate substitutions:
      $$z_1''+left(-1+frace^-t6+e^-t+frac4(6+e^-t)tanh(t)6+e^-tright)z_1'+left(frac-e^-t6+e^-t+6+e^-t-4tanh(t)right)z_1=0.$$
      Is there a technique for solving this diff equ? Perhaps my more general question is do we have a strategy for solving 2nd-order linear DEs of the form $z_1''+a(t)z_1'+b(t)z_1=0$ ?



      Thanks for your help.










      share|cite|improve this question











      $endgroup$




      I was analyzing stability for the following system of differential equations:
      $$z_1'=z_1+(6+e^-t)z_2$$
      $$z_2'=-z_1-4tanh(t)z_2$$
      In an effort to check my answer, I attempted to solve the system, but I'm not sure if this can even be accomplished. The following 2nd-order DE is what resulted when I differentiated the first equation above and made the appropriate substitutions:
      $$z_1''+left(-1+frace^-t6+e^-t+frac4(6+e^-t)tanh(t)6+e^-tright)z_1'+left(frac-e^-t6+e^-t+6+e^-t-4tanh(t)right)z_1=0.$$
      Is there a technique for solving this diff equ? Perhaps my more general question is do we have a strategy for solving 2nd-order linear DEs of the form $z_1''+a(t)z_1'+b(t)z_1=0$ ?



      Thanks for your help.







      ordinary-differential-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 23 '13 at 16:46









      MJD

      47.8k29216397




      47.8k29216397










      asked Mar 23 '13 at 16:43









      CHGCHG

      128115




      128115




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm mentions the solving method of some special cases and general case of systems of linear first-order ODEs with functional coefficients. Note that the special cases mentioned in http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm are all having the simpler solving method than that the general case.



          According to this question, unfortunately it is obviously only belongs to the general case (http://eqworld.ipmnet.ru/en/solutions/sysode/sode0107.pdf). So you should be unavoidable to handle some second-order linear ODEs with complicated functional coefficients.



          $z_1''=z_1'+(6+e^-t)z_2'-e^-tz_2$



          $z_1''=z_1'+(6+e^-t)(-z_1-4tanh(t)z_2)-e^-tz_2$



          $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))z_2$



          $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))dfracz_1'-z_16+e^-t$



          $z_1''=-left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(dfrace^-t6+e^-t-6-e^-t+4tanh(t)right)z_1$



          $z_1''+left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(6+e^-t-dfrace^-t6+e^-t-4tanh(t)right)z_1=0$



          $dfracd^2z_1dt^2+left(-dfrac66+e^-t+dfrac4(1-e^-2t)1+e^-2tright)dfracdz_1dt+left(dfrac36+11e^-t+e^-2t6+e^-t-dfrac4(1-e^-2t)1+e^-2tright)z_1=0$



          $dfracd^2z_1dt^2-left(dfrac4e^-2t-4e^-2t+1+dfrac6e^-t+6right)dfracdz_1dt+left(dfrac4e^-2t-4e^-2t+1+dfrace^-2t+11e^-t+36e^-t+6right)z_1=0$



          Let $u=e^-t$ ,



          Then $dfracdz_1dt=dfracdz_1dudfracdudt=-e^-tdfracdz_1du=-udfracdz_1du$



          $dfracd^2z_1dt^2=dfracddtleft(-udfracdz_1duright)=dfracdduleft(-udfracdz_1duright)dfracdudt=left(-udfracd^2z_1du^2-dfracdz_1duright)(-u)=u^2dfracd^2z_1du^2+udfracdz_1du$



          $therefore u^2dfracd^2z_1du^2+udfracdz_1du+left(dfrac4u^2-4u^2+1+dfrac6u+6right)udfracdz_1du+left(dfrac4u^2-4u^2+1+dfracu^2+11u+36u+6right)z_1=0$



          $dfracd^2z_1du^2+dfrac1uleft(5-dfrac8u^2+1+dfrac6u+6right)dfracdz_1du+dfrac1u^2left(4-dfrac8u^2+1+dfracu^2+11u+36u+6right)z_1=0$



          $dfracd^2z_1du^2+left(dfrac5u-dfrac8u(u^2+1)+dfrac6u(u+6)right)dfracdz_1du+left(dfrac4u^2-dfrac8u^2(u^2+1)+dfracu^2+11u+36u^2(u+6)right)z_1=0$



          $dfracd^2z_1du^2+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)dfracdz_1du+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)z_1=0$



          Let $z_1=uz$ ,



          Then $dfracdz_1du=udfracdzdu+z$



          $dfracd^2z_1du^2=udfracd^2zdu^2+dfracdzdu+dfracdzdu=udfracd^2zdu^2+2dfracdzdu$



          $therefore udfracd^2zdu^2+2dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)left(udfracdzdu+zright)+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)uz=0$



          $udfracd^2zdu^2+2dfracdzdu+left(dfrac8u^2u^2+1-dfracuu+6-2right)dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)z+left(dfrac8uu^2+1+dfracu6(u+6)+dfrac56+dfrac2uright)z=0$



          $udfracd^2zdu^2+left(dfrac8u^2u^2+1-dfracuu+6right)dfracdzdu+left(dfrac16uu^2+1-dfrac2u+6+1right)z=0$



          $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1-dfrac2u(u+6)+dfrac1uright)z=0$



          $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1+dfrac13(u+6)+dfrac23uright)z=0$






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f338893%2fdifferential-equation-solving-a-second-order-ode-with-variable-coefficients%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm mentions the solving method of some special cases and general case of systems of linear first-order ODEs with functional coefficients. Note that the special cases mentioned in http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm are all having the simpler solving method than that the general case.



            According to this question, unfortunately it is obviously only belongs to the general case (http://eqworld.ipmnet.ru/en/solutions/sysode/sode0107.pdf). So you should be unavoidable to handle some second-order linear ODEs with complicated functional coefficients.



            $z_1''=z_1'+(6+e^-t)z_2'-e^-tz_2$



            $z_1''=z_1'+(6+e^-t)(-z_1-4tanh(t)z_2)-e^-tz_2$



            $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))z_2$



            $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))dfracz_1'-z_16+e^-t$



            $z_1''=-left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(dfrace^-t6+e^-t-6-e^-t+4tanh(t)right)z_1$



            $z_1''+left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(6+e^-t-dfrace^-t6+e^-t-4tanh(t)right)z_1=0$



            $dfracd^2z_1dt^2+left(-dfrac66+e^-t+dfrac4(1-e^-2t)1+e^-2tright)dfracdz_1dt+left(dfrac36+11e^-t+e^-2t6+e^-t-dfrac4(1-e^-2t)1+e^-2tright)z_1=0$



            $dfracd^2z_1dt^2-left(dfrac4e^-2t-4e^-2t+1+dfrac6e^-t+6right)dfracdz_1dt+left(dfrac4e^-2t-4e^-2t+1+dfrace^-2t+11e^-t+36e^-t+6right)z_1=0$



            Let $u=e^-t$ ,



            Then $dfracdz_1dt=dfracdz_1dudfracdudt=-e^-tdfracdz_1du=-udfracdz_1du$



            $dfracd^2z_1dt^2=dfracddtleft(-udfracdz_1duright)=dfracdduleft(-udfracdz_1duright)dfracdudt=left(-udfracd^2z_1du^2-dfracdz_1duright)(-u)=u^2dfracd^2z_1du^2+udfracdz_1du$



            $therefore u^2dfracd^2z_1du^2+udfracdz_1du+left(dfrac4u^2-4u^2+1+dfrac6u+6right)udfracdz_1du+left(dfrac4u^2-4u^2+1+dfracu^2+11u+36u+6right)z_1=0$



            $dfracd^2z_1du^2+dfrac1uleft(5-dfrac8u^2+1+dfrac6u+6right)dfracdz_1du+dfrac1u^2left(4-dfrac8u^2+1+dfracu^2+11u+36u+6right)z_1=0$



            $dfracd^2z_1du^2+left(dfrac5u-dfrac8u(u^2+1)+dfrac6u(u+6)right)dfracdz_1du+left(dfrac4u^2-dfrac8u^2(u^2+1)+dfracu^2+11u+36u^2(u+6)right)z_1=0$



            $dfracd^2z_1du^2+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)dfracdz_1du+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)z_1=0$



            Let $z_1=uz$ ,



            Then $dfracdz_1du=udfracdzdu+z$



            $dfracd^2z_1du^2=udfracd^2zdu^2+dfracdzdu+dfracdzdu=udfracd^2zdu^2+2dfracdzdu$



            $therefore udfracd^2zdu^2+2dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)left(udfracdzdu+zright)+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)uz=0$



            $udfracd^2zdu^2+2dfracdzdu+left(dfrac8u^2u^2+1-dfracuu+6-2right)dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)z+left(dfrac8uu^2+1+dfracu6(u+6)+dfrac56+dfrac2uright)z=0$



            $udfracd^2zdu^2+left(dfrac8u^2u^2+1-dfracuu+6right)dfracdzdu+left(dfrac16uu^2+1-dfrac2u+6+1right)z=0$



            $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1-dfrac2u(u+6)+dfrac1uright)z=0$



            $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1+dfrac13(u+6)+dfrac23uright)z=0$






            share|cite|improve this answer











            $endgroup$

















              1












              $begingroup$

              http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm mentions the solving method of some special cases and general case of systems of linear first-order ODEs with functional coefficients. Note that the special cases mentioned in http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm are all having the simpler solving method than that the general case.



              According to this question, unfortunately it is obviously only belongs to the general case (http://eqworld.ipmnet.ru/en/solutions/sysode/sode0107.pdf). So you should be unavoidable to handle some second-order linear ODEs with complicated functional coefficients.



              $z_1''=z_1'+(6+e^-t)z_2'-e^-tz_2$



              $z_1''=z_1'+(6+e^-t)(-z_1-4tanh(t)z_2)-e^-tz_2$



              $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))z_2$



              $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))dfracz_1'-z_16+e^-t$



              $z_1''=-left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(dfrace^-t6+e^-t-6-e^-t+4tanh(t)right)z_1$



              $z_1''+left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(6+e^-t-dfrace^-t6+e^-t-4tanh(t)right)z_1=0$



              $dfracd^2z_1dt^2+left(-dfrac66+e^-t+dfrac4(1-e^-2t)1+e^-2tright)dfracdz_1dt+left(dfrac36+11e^-t+e^-2t6+e^-t-dfrac4(1-e^-2t)1+e^-2tright)z_1=0$



              $dfracd^2z_1dt^2-left(dfrac4e^-2t-4e^-2t+1+dfrac6e^-t+6right)dfracdz_1dt+left(dfrac4e^-2t-4e^-2t+1+dfrace^-2t+11e^-t+36e^-t+6right)z_1=0$



              Let $u=e^-t$ ,



              Then $dfracdz_1dt=dfracdz_1dudfracdudt=-e^-tdfracdz_1du=-udfracdz_1du$



              $dfracd^2z_1dt^2=dfracddtleft(-udfracdz_1duright)=dfracdduleft(-udfracdz_1duright)dfracdudt=left(-udfracd^2z_1du^2-dfracdz_1duright)(-u)=u^2dfracd^2z_1du^2+udfracdz_1du$



              $therefore u^2dfracd^2z_1du^2+udfracdz_1du+left(dfrac4u^2-4u^2+1+dfrac6u+6right)udfracdz_1du+left(dfrac4u^2-4u^2+1+dfracu^2+11u+36u+6right)z_1=0$



              $dfracd^2z_1du^2+dfrac1uleft(5-dfrac8u^2+1+dfrac6u+6right)dfracdz_1du+dfrac1u^2left(4-dfrac8u^2+1+dfracu^2+11u+36u+6right)z_1=0$



              $dfracd^2z_1du^2+left(dfrac5u-dfrac8u(u^2+1)+dfrac6u(u+6)right)dfracdz_1du+left(dfrac4u^2-dfrac8u^2(u^2+1)+dfracu^2+11u+36u^2(u+6)right)z_1=0$



              $dfracd^2z_1du^2+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)dfracdz_1du+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)z_1=0$



              Let $z_1=uz$ ,



              Then $dfracdz_1du=udfracdzdu+z$



              $dfracd^2z_1du^2=udfracd^2zdu^2+dfracdzdu+dfracdzdu=udfracd^2zdu^2+2dfracdzdu$



              $therefore udfracd^2zdu^2+2dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)left(udfracdzdu+zright)+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)uz=0$



              $udfracd^2zdu^2+2dfracdzdu+left(dfrac8u^2u^2+1-dfracuu+6-2right)dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)z+left(dfrac8uu^2+1+dfracu6(u+6)+dfrac56+dfrac2uright)z=0$



              $udfracd^2zdu^2+left(dfrac8u^2u^2+1-dfracuu+6right)dfracdzdu+left(dfrac16uu^2+1-dfrac2u+6+1right)z=0$



              $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1-dfrac2u(u+6)+dfrac1uright)z=0$



              $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1+dfrac13(u+6)+dfrac23uright)z=0$






              share|cite|improve this answer











              $endgroup$















                1












                1








                1





                $begingroup$

                http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm mentions the solving method of some special cases and general case of systems of linear first-order ODEs with functional coefficients. Note that the special cases mentioned in http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm are all having the simpler solving method than that the general case.



                According to this question, unfortunately it is obviously only belongs to the general case (http://eqworld.ipmnet.ru/en/solutions/sysode/sode0107.pdf). So you should be unavoidable to handle some second-order linear ODEs with complicated functional coefficients.



                $z_1''=z_1'+(6+e^-t)z_2'-e^-tz_2$



                $z_1''=z_1'+(6+e^-t)(-z_1-4tanh(t)z_2)-e^-tz_2$



                $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))z_2$



                $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))dfracz_1'-z_16+e^-t$



                $z_1''=-left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(dfrace^-t6+e^-t-6-e^-t+4tanh(t)right)z_1$



                $z_1''+left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(6+e^-t-dfrace^-t6+e^-t-4tanh(t)right)z_1=0$



                $dfracd^2z_1dt^2+left(-dfrac66+e^-t+dfrac4(1-e^-2t)1+e^-2tright)dfracdz_1dt+left(dfrac36+11e^-t+e^-2t6+e^-t-dfrac4(1-e^-2t)1+e^-2tright)z_1=0$



                $dfracd^2z_1dt^2-left(dfrac4e^-2t-4e^-2t+1+dfrac6e^-t+6right)dfracdz_1dt+left(dfrac4e^-2t-4e^-2t+1+dfrace^-2t+11e^-t+36e^-t+6right)z_1=0$



                Let $u=e^-t$ ,



                Then $dfracdz_1dt=dfracdz_1dudfracdudt=-e^-tdfracdz_1du=-udfracdz_1du$



                $dfracd^2z_1dt^2=dfracddtleft(-udfracdz_1duright)=dfracdduleft(-udfracdz_1duright)dfracdudt=left(-udfracd^2z_1du^2-dfracdz_1duright)(-u)=u^2dfracd^2z_1du^2+udfracdz_1du$



                $therefore u^2dfracd^2z_1du^2+udfracdz_1du+left(dfrac4u^2-4u^2+1+dfrac6u+6right)udfracdz_1du+left(dfrac4u^2-4u^2+1+dfracu^2+11u+36u+6right)z_1=0$



                $dfracd^2z_1du^2+dfrac1uleft(5-dfrac8u^2+1+dfrac6u+6right)dfracdz_1du+dfrac1u^2left(4-dfrac8u^2+1+dfracu^2+11u+36u+6right)z_1=0$



                $dfracd^2z_1du^2+left(dfrac5u-dfrac8u(u^2+1)+dfrac6u(u+6)right)dfracdz_1du+left(dfrac4u^2-dfrac8u^2(u^2+1)+dfracu^2+11u+36u^2(u+6)right)z_1=0$



                $dfracd^2z_1du^2+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)dfracdz_1du+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)z_1=0$



                Let $z_1=uz$ ,



                Then $dfracdz_1du=udfracdzdu+z$



                $dfracd^2z_1du^2=udfracd^2zdu^2+dfracdzdu+dfracdzdu=udfracd^2zdu^2+2dfracdzdu$



                $therefore udfracd^2zdu^2+2dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)left(udfracdzdu+zright)+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)uz=0$



                $udfracd^2zdu^2+2dfracdzdu+left(dfrac8u^2u^2+1-dfracuu+6-2right)dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)z+left(dfrac8uu^2+1+dfracu6(u+6)+dfrac56+dfrac2uright)z=0$



                $udfracd^2zdu^2+left(dfrac8u^2u^2+1-dfracuu+6right)dfracdzdu+left(dfrac16uu^2+1-dfrac2u+6+1right)z=0$



                $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1-dfrac2u(u+6)+dfrac1uright)z=0$



                $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1+dfrac13(u+6)+dfrac23uright)z=0$






                share|cite|improve this answer











                $endgroup$



                http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm mentions the solving method of some special cases and general case of systems of linear first-order ODEs with functional coefficients. Note that the special cases mentioned in http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm are all having the simpler solving method than that the general case.



                According to this question, unfortunately it is obviously only belongs to the general case (http://eqworld.ipmnet.ru/en/solutions/sysode/sode0107.pdf). So you should be unavoidable to handle some second-order linear ODEs with complicated functional coefficients.



                $z_1''=z_1'+(6+e^-t)z_2'-e^-tz_2$



                $z_1''=z_1'+(6+e^-t)(-z_1-4tanh(t)z_2)-e^-tz_2$



                $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))z_2$



                $z_1''=z_1'-(6+e^-t)z_1-(e^-t+4(6+e^-t)tanh(t))dfracz_1'-z_16+e^-t$



                $z_1''=-left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(dfrace^-t6+e^-t-6-e^-t+4tanh(t)right)z_1$



                $z_1''+left(dfrace^-t6+e^-t-1+4tanh(t)right)z_1'+left(6+e^-t-dfrace^-t6+e^-t-4tanh(t)right)z_1=0$



                $dfracd^2z_1dt^2+left(-dfrac66+e^-t+dfrac4(1-e^-2t)1+e^-2tright)dfracdz_1dt+left(dfrac36+11e^-t+e^-2t6+e^-t-dfrac4(1-e^-2t)1+e^-2tright)z_1=0$



                $dfracd^2z_1dt^2-left(dfrac4e^-2t-4e^-2t+1+dfrac6e^-t+6right)dfracdz_1dt+left(dfrac4e^-2t-4e^-2t+1+dfrace^-2t+11e^-t+36e^-t+6right)z_1=0$



                Let $u=e^-t$ ,



                Then $dfracdz_1dt=dfracdz_1dudfracdudt=-e^-tdfracdz_1du=-udfracdz_1du$



                $dfracd^2z_1dt^2=dfracddtleft(-udfracdz_1duright)=dfracdduleft(-udfracdz_1duright)dfracdudt=left(-udfracd^2z_1du^2-dfracdz_1duright)(-u)=u^2dfracd^2z_1du^2+udfracdz_1du$



                $therefore u^2dfracd^2z_1du^2+udfracdz_1du+left(dfrac4u^2-4u^2+1+dfrac6u+6right)udfracdz_1du+left(dfrac4u^2-4u^2+1+dfracu^2+11u+36u+6right)z_1=0$



                $dfracd^2z_1du^2+dfrac1uleft(5-dfrac8u^2+1+dfrac6u+6right)dfracdz_1du+dfrac1u^2left(4-dfrac8u^2+1+dfracu^2+11u+36u+6right)z_1=0$



                $dfracd^2z_1du^2+left(dfrac5u-dfrac8u(u^2+1)+dfrac6u(u+6)right)dfracdz_1du+left(dfrac4u^2-dfrac8u^2(u^2+1)+dfracu^2+11u+36u^2(u+6)right)z_1=0$



                $dfracd^2z_1du^2+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)dfracdz_1du+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)z_1=0$



                Let $z_1=uz$ ,



                Then $dfracdz_1du=udfracdzdu+z$



                $dfracd^2z_1du^2=udfracd^2zdu^2+dfracdzdu+dfracdzdu=udfracd^2zdu^2+2dfracdzdu$



                $therefore udfracd^2zdu^2+2dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)left(udfracdzdu+zright)+left(dfrac8u^2+1+dfrac16(u+6)+dfrac56u+dfrac2u^2right)uz=0$



                $udfracd^2zdu^2+2dfracdzdu+left(dfrac8u^2u^2+1-dfracuu+6-2right)dfracdzdu+left(dfrac8uu^2+1-dfrac1u+6-dfrac2uright)z+left(dfrac8uu^2+1+dfracu6(u+6)+dfrac56+dfrac2uright)z=0$



                $udfracd^2zdu^2+left(dfrac8u^2u^2+1-dfracuu+6right)dfracdzdu+left(dfrac16uu^2+1-dfrac2u+6+1right)z=0$



                $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1-dfrac2u(u+6)+dfrac1uright)z=0$



                $dfracd^2zdu^2+left(dfrac8uu^2+1-dfrac1u+6right)dfracdzdu+left(dfrac16u^2+1+dfrac13(u+6)+dfrac23uright)z=0$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 31 at 7:09

























                answered Apr 8 '13 at 0:20









                doraemonpauldoraemonpaul

                12.9k31761




                12.9k31761



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f338893%2fdifferential-equation-solving-a-second-order-ode-with-variable-coefficients%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                    Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε