Skip to main content

Toanielstik Navigaasjemenu

Kultuer


toanielRichard MonetteliteratuerteatertrageedzjekomeedzjesolotoanielZelleFreark Sminkregisseur












Toanielstik




Ut Wikipedy






Jump to navigation
Jump to search


In toanielstik is in wurk fan toaniel. It omfiemet twa besibbe begripen: Oan de iene kant is it de beskriuwing fan de hannelings fan de akteurs, it skreaune stik. Oan de oare kant is it de searje fan útfierings, dêr't de akteurs dy beskriuwing ynterpretearje. Richard Monette sei dat it toanielstik op 'e planke literatuer is, wylst in toanielstik op 'e planken teater is.


In toanielstik wurdt ornaris skreaun troch ien skriuwer, as troch in pear skriuwers. Der wurdt dêrby in ûnderskie makke tusken de trageedzje, dy't in faset fan de minsklike steat beklammet, en de komeedzje, dêr't de yntriges fral it fermaak fan de taskôger tsjinje moatte.


In toanielstik wurdt ornaris troch in gruttere groep minsken, in toanielselskip, mear as ien kear útfierd. Der is lykwols ek solotoaniel, dêr't in stik mar troch ien akteur by spile wurdt, lykas Zelle troch Freark Smink. Eltse útfiering is in ynterpretaasje fan it stik sa't de skriuwer it skreaun hat. Faak is dy ynterpretaasje foar in grut part it wurk fan de regisseur, dy't bepaalt hokfoar dekors en kostúms de sfear fan it stik goed oerbringe, en tegearre mei de spilers is de regisseur ek dejinge dy't ynterpretearret hoe't de skreaune wurden en hannelings krekt brocht wurde moatte.


Toanielstikken hawwe al in skiednis fan milennia. De earste stikken dy't fêstlein binne, binne ferbûn mei religy. Mar der binne yn letter tiden sa'n protte oare foarmen fan toaniel dat oppere is dat de grûn ek wêze kin dat oer religy earder teksten fêstlein binne. It soe dan kinne dat it toaniel bûten de timpel like âld is of faaks sels noch âlder.









Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Toanielstik&oldid=645094"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.012","walltime":"0.017","ppvisitednodes":"value":1,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":0,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":1,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 0.000 1 -total"],"cachereport":"origin":"mw1309","timestamp":"20190331134819","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Toanielstik","url":"https://fy.wikipedia.org/wiki/Toanielstik","sameAs":"http://www.wikidata.org/entity/Q25379","mainEntity":"http://www.wikidata.org/entity/Q25379","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2008-11-03T11:58:15Z","dateModified":"2013-04-22T06:41:13Z"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":121,"wgHostname":"mw1322"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε