Finding bases for a Linear Transformation of a Matrix The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraHow to find basis using the transformation matrixChange Bases of Linear TransformationLinear maps, matrix transformationFinding new matrix representation of a linear transformation with respect to new basisFind matrix of linear transformation relative to new basesHow to find bases $alpha$ and $beta$ for the following $P_3(BbbR)$ and $P_2(BbbR)$?Consider the matrix of the transformationHow to find the matrix of a linear transformation with respect to two bases?Verifying the row-rank and column-rank of a matrix are equal by finding bases for eachHow to find basesDetermine if bases for R2 and R3 exist, given a linear transformation matrix with respect to said bases

60's-70's movie: home appliances revolting against the owners

Can a flute soloist sit?

Do I have Disadvantage attacking with an off-hand weapon?

Intergalactic human space ship encounters another ship, character gets shunted off beyond known universe, reality starts collapsing

Identify 80s or 90s comics with ripped creatures (not dwarves)

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

Drawing vertical/oblique lines in Metrical tree (tikz-qtree, tipa)

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Am I ethically obligated to go into work on an off day if the reason is sudden?

Can each chord in a progression create its own key?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

What can I do if neighbor is blocking my solar panels intentionally?

How to read αἱμύλιος or when to aspirate

Can withdrawing asylum be illegal?

Match Roman Numerals

Do ℕ, mathbbN, BbbN, symbbN effectively differ, and is there a "canonical" specification of the naturals?

How do I design a circuit to convert a 100 mV and 50 Hz sine wave to a square wave?

Mortgage adviser recommends a longer term than necessary combined with overpayments

Why did Peik Lin say, "I'm not an animal"?

What force causes entropy to increase?

should truth entail possible truth

Does Parliament hold absolute power in the UK?

"is" operation returns false with ndarray.data attribute, even though two array objects have same id

Word for: a synonym with a positive connotation?



Finding bases for a Linear Transformation of a Matrix



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraHow to find basis using the transformation matrixChange Bases of Linear TransformationLinear maps, matrix transformationFinding new matrix representation of a linear transformation with respect to new basisFind matrix of linear transformation relative to new basesHow to find bases $alpha$ and $beta$ for the following $P_3(BbbR)$ and $P_2(BbbR)$?Consider the matrix of the transformationHow to find the matrix of a linear transformation with respect to two bases?Verifying the row-rank and column-rank of a matrix are equal by finding bases for eachHow to find basesDetermine if bases for R2 and R3 exist, given a linear transformation matrix with respect to said bases










2












$begingroup$


Suppose a linear transformation $T $: $P_3(Bbb R)$ to $ P_2(Bbb R))$ has the matrix $$A=beginpmatrix 1 & 2 & 0 & 0 \ 0 & 1 & 2 & 1 \ 1& 1 & 1 & 1 endpmatrix$$
relative to the standard bases of $P_3(Bbb R)$ and $ P_2(Bbb R))$.



Find bases $alpha$ of $P_3(Bbb R)$ and $beta$ of $ P_2(Bbb R))$ such that the matrix $T$ relative to $alpha$ and $beta$ is the reduced row echelon form of A.



I have been looking everywhere for a similar example. I am struggling with where to begin.



I have calculated that the reduced row echelon form of A is:
$$beginpmatrix 1 & 0 & 0 & frac23 \ 0 & 1 & 0 & -frac13 \ 0& 0 & 1 & frac23 endpmatrix$$










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Hint: Can you find an invertible matrix $B$ such that $BA$ is the rref of $A$?
    $endgroup$
    – amd
    Mar 4 '16 at 19:47










  • $begingroup$
    Thank you! I have figured out B. Is that all that has to be done?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:17










  • $begingroup$
    Oops, I still have to find my bases alpha and beta, how do i go about this?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:27










  • $begingroup$
    Interpret $B$ as a change-of-basis matrix. Note that the solution isn’t unique. You can start with pretty much any basis for $P_3(mathbb R)$ and find a corresponding basis for $P_2(mathbb R)$ so that the matrix of $A$ has the desired form.
    $endgroup$
    – amd
    Mar 4 '16 at 20:37















2












$begingroup$


Suppose a linear transformation $T $: $P_3(Bbb R)$ to $ P_2(Bbb R))$ has the matrix $$A=beginpmatrix 1 & 2 & 0 & 0 \ 0 & 1 & 2 & 1 \ 1& 1 & 1 & 1 endpmatrix$$
relative to the standard bases of $P_3(Bbb R)$ and $ P_2(Bbb R))$.



Find bases $alpha$ of $P_3(Bbb R)$ and $beta$ of $ P_2(Bbb R))$ such that the matrix $T$ relative to $alpha$ and $beta$ is the reduced row echelon form of A.



I have been looking everywhere for a similar example. I am struggling with where to begin.



I have calculated that the reduced row echelon form of A is:
$$beginpmatrix 1 & 0 & 0 & frac23 \ 0 & 1 & 0 & -frac13 \ 0& 0 & 1 & frac23 endpmatrix$$










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Hint: Can you find an invertible matrix $B$ such that $BA$ is the rref of $A$?
    $endgroup$
    – amd
    Mar 4 '16 at 19:47










  • $begingroup$
    Thank you! I have figured out B. Is that all that has to be done?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:17










  • $begingroup$
    Oops, I still have to find my bases alpha and beta, how do i go about this?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:27










  • $begingroup$
    Interpret $B$ as a change-of-basis matrix. Note that the solution isn’t unique. You can start with pretty much any basis for $P_3(mathbb R)$ and find a corresponding basis for $P_2(mathbb R)$ so that the matrix of $A$ has the desired form.
    $endgroup$
    – amd
    Mar 4 '16 at 20:37













2












2








2





$begingroup$


Suppose a linear transformation $T $: $P_3(Bbb R)$ to $ P_2(Bbb R))$ has the matrix $$A=beginpmatrix 1 & 2 & 0 & 0 \ 0 & 1 & 2 & 1 \ 1& 1 & 1 & 1 endpmatrix$$
relative to the standard bases of $P_3(Bbb R)$ and $ P_2(Bbb R))$.



Find bases $alpha$ of $P_3(Bbb R)$ and $beta$ of $ P_2(Bbb R))$ such that the matrix $T$ relative to $alpha$ and $beta$ is the reduced row echelon form of A.



I have been looking everywhere for a similar example. I am struggling with where to begin.



I have calculated that the reduced row echelon form of A is:
$$beginpmatrix 1 & 0 & 0 & frac23 \ 0 & 1 & 0 & -frac13 \ 0& 0 & 1 & frac23 endpmatrix$$










share|cite|improve this question











$endgroup$




Suppose a linear transformation $T $: $P_3(Bbb R)$ to $ P_2(Bbb R))$ has the matrix $$A=beginpmatrix 1 & 2 & 0 & 0 \ 0 & 1 & 2 & 1 \ 1& 1 & 1 & 1 endpmatrix$$
relative to the standard bases of $P_3(Bbb R)$ and $ P_2(Bbb R))$.



Find bases $alpha$ of $P_3(Bbb R)$ and $beta$ of $ P_2(Bbb R))$ such that the matrix $T$ relative to $alpha$ and $beta$ is the reduced row echelon form of A.



I have been looking everywhere for a similar example. I am struggling with where to begin.



I have calculated that the reduced row echelon form of A is:
$$beginpmatrix 1 & 0 & 0 & frac23 \ 0 & 1 & 0 & -frac13 \ 0& 0 & 1 & frac23 endpmatrix$$







linear-algebra matrices linear-transformations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 4 '16 at 20:15

























asked Mar 4 '16 at 16:06







user319635














  • 1




    $begingroup$
    Hint: Can you find an invertible matrix $B$ such that $BA$ is the rref of $A$?
    $endgroup$
    – amd
    Mar 4 '16 at 19:47










  • $begingroup$
    Thank you! I have figured out B. Is that all that has to be done?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:17










  • $begingroup$
    Oops, I still have to find my bases alpha and beta, how do i go about this?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:27










  • $begingroup$
    Interpret $B$ as a change-of-basis matrix. Note that the solution isn’t unique. You can start with pretty much any basis for $P_3(mathbb R)$ and find a corresponding basis for $P_2(mathbb R)$ so that the matrix of $A$ has the desired form.
    $endgroup$
    – amd
    Mar 4 '16 at 20:37












  • 1




    $begingroup$
    Hint: Can you find an invertible matrix $B$ such that $BA$ is the rref of $A$?
    $endgroup$
    – amd
    Mar 4 '16 at 19:47










  • $begingroup$
    Thank you! I have figured out B. Is that all that has to be done?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:17










  • $begingroup$
    Oops, I still have to find my bases alpha and beta, how do i go about this?
    $endgroup$
    – user319635
    Mar 4 '16 at 20:27










  • $begingroup$
    Interpret $B$ as a change-of-basis matrix. Note that the solution isn’t unique. You can start with pretty much any basis for $P_3(mathbb R)$ and find a corresponding basis for $P_2(mathbb R)$ so that the matrix of $A$ has the desired form.
    $endgroup$
    – amd
    Mar 4 '16 at 20:37







1




1




$begingroup$
Hint: Can you find an invertible matrix $B$ such that $BA$ is the rref of $A$?
$endgroup$
– amd
Mar 4 '16 at 19:47




$begingroup$
Hint: Can you find an invertible matrix $B$ such that $BA$ is the rref of $A$?
$endgroup$
– amd
Mar 4 '16 at 19:47












$begingroup$
Thank you! I have figured out B. Is that all that has to be done?
$endgroup$
– user319635
Mar 4 '16 at 20:17




$begingroup$
Thank you! I have figured out B. Is that all that has to be done?
$endgroup$
– user319635
Mar 4 '16 at 20:17












$begingroup$
Oops, I still have to find my bases alpha and beta, how do i go about this?
$endgroup$
– user319635
Mar 4 '16 at 20:27




$begingroup$
Oops, I still have to find my bases alpha and beta, how do i go about this?
$endgroup$
– user319635
Mar 4 '16 at 20:27












$begingroup$
Interpret $B$ as a change-of-basis matrix. Note that the solution isn’t unique. You can start with pretty much any basis for $P_3(mathbb R)$ and find a corresponding basis for $P_2(mathbb R)$ so that the matrix of $A$ has the desired form.
$endgroup$
– amd
Mar 4 '16 at 20:37




$begingroup$
Interpret $B$ as a change-of-basis matrix. Note that the solution isn’t unique. You can start with pretty much any basis for $P_3(mathbb R)$ and find a corresponding basis for $P_2(mathbb R)$ so that the matrix of $A$ has the desired form.
$endgroup$
– amd
Mar 4 '16 at 20:37










1 Answer
1






active

oldest

votes


















0












$begingroup$

You have found a product of elementary matrices $B$ such that $operatornamerref(A) = BA$. If we denote the matrix of a transformation $T$ in the bases $B,C$ (for the domain, codomain respectively) by $[T]_B^C$, we have in our situation $$[mathitid]_mathitst^beta [T]_mathitst^mathitst = [T]_mathitst^beta = operatornamerref(A) = BA $$



for some unknown basis $beta$. (And where $mathitst$ represents either of the standard bases, and $mathitid$ is the identity transformation.) This suggests that we take $alpha = mathitst$, and $beta$ to be the unique basis such that $$[mathitid]_mathitst^beta = B,$$ or $$[mathitid]_beta^mathitst = B^-1.$$



This means that the coordinates of the vectors in $beta$ in the standard basis are simply the columns of $B^-1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
    $endgroup$
    – user319635
    Mar 4 '16 at 23:49










  • $begingroup$
    Wait but this isn't a polynomial of degree 2?
    $endgroup$
    – user319635
    Mar 5 '16 at 0:03










  • $begingroup$
    @user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
    $endgroup$
    – Alex Provost
    Mar 5 '16 at 0:12











  • $begingroup$
    Right! Thank you so much!
    $endgroup$
    – user319635
    Mar 5 '16 at 0:29











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1683088%2ffinding-bases-for-a-linear-transformation-of-a-matrix%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown
























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

You have found a product of elementary matrices $B$ such that $operatornamerref(A) = BA$. If we denote the matrix of a transformation $T$ in the bases $B,C$ (for the domain, codomain respectively) by $[T]_B^C$, we have in our situation $$[mathitid]_mathitst^beta [T]_mathitst^mathitst = [T]_mathitst^beta = operatornamerref(A) = BA $$



for some unknown basis $beta$. (And where $mathitst$ represents either of the standard bases, and $mathitid$ is the identity transformation.) This suggests that we take $alpha = mathitst$, and $beta$ to be the unique basis such that $$[mathitid]_mathitst^beta = B,$$ or $$[mathitid]_beta^mathitst = B^-1.$$



This means that the coordinates of the vectors in $beta$ in the standard basis are simply the columns of $B^-1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
    $endgroup$
    – user319635
    Mar 4 '16 at 23:49










  • $begingroup$
    Wait but this isn't a polynomial of degree 2?
    $endgroup$
    – user319635
    Mar 5 '16 at 0:03










  • $begingroup$
    @user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
    $endgroup$
    – Alex Provost
    Mar 5 '16 at 0:12











  • $begingroup$
    Right! Thank you so much!
    $endgroup$
    – user319635
    Mar 5 '16 at 0:29















0












$begingroup$

You have found a product of elementary matrices $B$ such that $operatornamerref(A) = BA$. If we denote the matrix of a transformation $T$ in the bases $B,C$ (for the domain, codomain respectively) by $[T]_B^C$, we have in our situation $$[mathitid]_mathitst^beta [T]_mathitst^mathitst = [T]_mathitst^beta = operatornamerref(A) = BA $$



for some unknown basis $beta$. (And where $mathitst$ represents either of the standard bases, and $mathitid$ is the identity transformation.) This suggests that we take $alpha = mathitst$, and $beta$ to be the unique basis such that $$[mathitid]_mathitst^beta = B,$$ or $$[mathitid]_beta^mathitst = B^-1.$$



This means that the coordinates of the vectors in $beta$ in the standard basis are simply the columns of $B^-1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
    $endgroup$
    – user319635
    Mar 4 '16 at 23:49










  • $begingroup$
    Wait but this isn't a polynomial of degree 2?
    $endgroup$
    – user319635
    Mar 5 '16 at 0:03










  • $begingroup$
    @user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
    $endgroup$
    – Alex Provost
    Mar 5 '16 at 0:12











  • $begingroup$
    Right! Thank you so much!
    $endgroup$
    – user319635
    Mar 5 '16 at 0:29













0












0








0





$begingroup$

You have found a product of elementary matrices $B$ such that $operatornamerref(A) = BA$. If we denote the matrix of a transformation $T$ in the bases $B,C$ (for the domain, codomain respectively) by $[T]_B^C$, we have in our situation $$[mathitid]_mathitst^beta [T]_mathitst^mathitst = [T]_mathitst^beta = operatornamerref(A) = BA $$



for some unknown basis $beta$. (And where $mathitst$ represents either of the standard bases, and $mathitid$ is the identity transformation.) This suggests that we take $alpha = mathitst$, and $beta$ to be the unique basis such that $$[mathitid]_mathitst^beta = B,$$ or $$[mathitid]_beta^mathitst = B^-1.$$



This means that the coordinates of the vectors in $beta$ in the standard basis are simply the columns of $B^-1$.






share|cite|improve this answer









$endgroup$



You have found a product of elementary matrices $B$ such that $operatornamerref(A) = BA$. If we denote the matrix of a transformation $T$ in the bases $B,C$ (for the domain, codomain respectively) by $[T]_B^C$, we have in our situation $$[mathitid]_mathitst^beta [T]_mathitst^mathitst = [T]_mathitst^beta = operatornamerref(A) = BA $$



for some unknown basis $beta$. (And where $mathitst$ represents either of the standard bases, and $mathitid$ is the identity transformation.) This suggests that we take $alpha = mathitst$, and $beta$ to be the unique basis such that $$[mathitid]_mathitst^beta = B,$$ or $$[mathitid]_beta^mathitst = B^-1.$$



This means that the coordinates of the vectors in $beta$ in the standard basis are simply the columns of $B^-1$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 4 '16 at 20:38









Alex ProvostAlex Provost

15.6k32351




15.6k32351











  • $begingroup$
    So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
    $endgroup$
    – user319635
    Mar 4 '16 at 23:49










  • $begingroup$
    Wait but this isn't a polynomial of degree 2?
    $endgroup$
    – user319635
    Mar 5 '16 at 0:03










  • $begingroup$
    @user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
    $endgroup$
    – Alex Provost
    Mar 5 '16 at 0:12











  • $begingroup$
    Right! Thank you so much!
    $endgroup$
    – user319635
    Mar 5 '16 at 0:29
















  • $begingroup$
    So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
    $endgroup$
    – user319635
    Mar 4 '16 at 23:49










  • $begingroup$
    Wait but this isn't a polynomial of degree 2?
    $endgroup$
    – user319635
    Mar 5 '16 at 0:03










  • $begingroup$
    @user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
    $endgroup$
    – Alex Provost
    Mar 5 '16 at 0:12











  • $begingroup$
    Right! Thank you so much!
    $endgroup$
    – user319635
    Mar 5 '16 at 0:29















$begingroup$
So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
$endgroup$
– user319635
Mar 4 '16 at 23:49




$begingroup$
So then does this mean $beta = [1, 0, 1], [2, 1, 1], [0, 2, 1]$ ? I am a bit confused what $alpha$ is
$endgroup$
– user319635
Mar 4 '16 at 23:49












$begingroup$
Wait but this isn't a polynomial of degree 2?
$endgroup$
– user319635
Mar 5 '16 at 0:03




$begingroup$
Wait but this isn't a polynomial of degree 2?
$endgroup$
– user319635
Mar 5 '16 at 0:03












$begingroup$
@user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
$endgroup$
– Alex Provost
Mar 5 '16 at 0:12





$begingroup$
@user319635 $alpha$ is the standard basis $(1,x,x^2,x^3)$. And not quite; these are the coordinates of the $beta$-vectors in the standard basis. Thus $beta = (1 + x^2,2 + x + x^2, 2x + x^2)$.
$endgroup$
– Alex Provost
Mar 5 '16 at 0:12













$begingroup$
Right! Thank you so much!
$endgroup$
– user319635
Mar 5 '16 at 0:29




$begingroup$
Right! Thank you so much!
$endgroup$
– user319635
Mar 5 '16 at 0:29

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1683088%2ffinding-bases-for-a-linear-transformation-of-a-matrix%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε