How to find the nth term in the following sequence: $1,1,2,2,4,4,8,8,16,16$ The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraHow to interpret the OEIS function for the “even fractal sequence” A103391 (1, 2, 2, 3, 2, 4, 3, 5, …)What will be nth term of the following sequence?How to find the nth term of this sequence?Number of possible ordered sequencesFind nth term of sequenceHow can i find the decimal values with a list of integers?Given a sequence find nth termFind nth term for below sequenceProve $lim_ntoinftyU_n = 1$ given $0 lt U_n - 1over U_nlt 1over n$ and $U_n>0$How to find the nth term in quadratic sequence?

Why can't wing-mounted spoilers be used to steepen approaches?

Single author papers against my advisor's will?

Would an alien lifeform be able to achieve space travel if lacking in vision?

Why doesn't a hydraulic lever violate conservation of energy?

How do you keep chess fun when your opponent constantly beats you?

Why are PDP-7-style microprogrammed instructions out of vogue?

Solving overdetermined system by QR decomposition

Was credit for the black hole image misappropriated?

How to read αἱμύλιος or when to aspirate

How to determine omitted units in a publication

What happens to a Warlock's expended Spell Slots when they gain a Level?

Do warforged have souls?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Is this wall load bearing? Blueprints and photos attached

Is there a writing software that you can sort scenes like slides in PowerPoint?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

How to make Illustrator type tool selection automatically adapt with text length

Student Loan from years ago pops up and is taking my salary

What force causes entropy to increase?

Is an up-to-date browser secure on an out-of-date OS?

Do working physicists consider Newtonian mechanics to be "falsified"?

Fixing different display colors within string

Circular reasoning in L'Hopital's rule

For what reasons would an animal species NOT cross a *horizontal* land bridge?



How to find the nth term in the following sequence: $1,1,2,2,4,4,8,8,16,16$



The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraHow to interpret the OEIS function for the “even fractal sequence” A103391 (1, 2, 2, 3, 2, 4, 3, 5, …)What will be nth term of the following sequence?How to find the nth term of this sequence?Number of possible ordered sequencesFind nth term of sequenceHow can i find the decimal values with a list of integers?Given a sequence find nth termFind nth term for below sequenceProve $lim_ntoinftyU_n = 1$ given $0 lt U_n - 1over U_nlt 1over n$ and $U_n>0$How to find the nth term in quadratic sequence?










4












$begingroup$


I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    Mar 31 at 6:35
















4












$begingroup$


I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    Mar 31 at 6:35














4












4








4


1



$begingroup$


I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.










share|cite|improve this question











$endgroup$




I'm having difficulty in finding the formula for the sequence above, when I put this in WolframAlpha it gave me a rather complex formula which I'm not convinced even works properly but I'm sure there's a simple way to achieve this. I've searched for many similar sequences but couldn't find anything that helped me.



I'm thinking I'll most likely need to have a condition for even numbers and another for noneven numbers.



Any help would be highly appreciated.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 31 at 7:04









YuiTo Cheng

2,4064937




2,4064937










asked Mar 31 at 6:30









AnonymousAnonymous

233




233







  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    Mar 31 at 6:35













  • 1




    $begingroup$
    How about using the floor function?
    $endgroup$
    – John. P
    Mar 31 at 6:35








1




1




$begingroup$
How about using the floor function?
$endgroup$
– John. P
Mar 31 at 6:35





$begingroup$
How about using the floor function?
$endgroup$
– John. P
Mar 31 at 6:35











3 Answers
3






active

oldest

votes


















7












$begingroup$

These are just powers of two. So: $2^lfloor n / 2rfloor$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
    $endgroup$
    – Anonymous
    Mar 31 at 6:47






  • 1




    $begingroup$
    This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
    $endgroup$
    – Flowers
    Mar 31 at 6:50


















3












$begingroup$

Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
$$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
$$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




    So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169109%2fhow-to-find-the-nth-term-in-the-following-sequence-1-1-2-2-4-4-8-8-16-16%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      These are just powers of two. So: $2^lfloor n / 2rfloor$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        Mar 31 at 6:47






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        Mar 31 at 6:50















      7












      $begingroup$

      These are just powers of two. So: $2^lfloor n / 2rfloor$






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        Mar 31 at 6:47






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        Mar 31 at 6:50













      7












      7








      7





      $begingroup$

      These are just powers of two. So: $2^lfloor n / 2rfloor$






      share|cite|improve this answer









      $endgroup$



      These are just powers of two. So: $2^lfloor n / 2rfloor$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Mar 31 at 6:34









      FlowersFlowers

      683410




      683410











      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        Mar 31 at 6:47






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        Mar 31 at 6:50
















      • $begingroup$
        I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
        $endgroup$
        – Anonymous
        Mar 31 at 6:47






      • 1




        $begingroup$
        This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
        $endgroup$
        – Flowers
        Mar 31 at 6:50















      $begingroup$
      I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
      $endgroup$
      – Anonymous
      Mar 31 at 6:47




      $begingroup$
      I'm not sure this works for everything, for example the 6th term should be 4 but 2^(3) = 8
      $endgroup$
      – Anonymous
      Mar 31 at 6:47




      1




      1




      $begingroup$
      This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
      $endgroup$
      – Flowers
      Mar 31 at 6:50




      $begingroup$
      This is assuming zero-indexing. So the first element is $n=0$. If you want it to be one-indexed then just subtract 1 from n in the formula.
      $endgroup$
      – Flowers
      Mar 31 at 6:50











      3












      $begingroup$

      Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
      $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
      Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
      $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
      Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$

        Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
        $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
        Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
        $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
        Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$

          Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
          $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
          Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
          $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
          Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.






          share|cite|improve this answer









          $endgroup$



          Alternatively, this is an example of a sequence where the $n$th term is a fixed linear combination of the immediately previous terms: We can write it as
          $$a_n = 2 a_n - 2, qquad a_0 = a_1 = 1.$$
          Using the ansatz $a_n = C r^n$ and substituting in the recursion formula gives $C r^n = 2 C r^n - 2$. Rearranging and clearing gives the characteristic equation $r^2 - 2 = 0$, whose solutions are $pm sqrt2$. So, the general solution is
          $$a_n = A (sqrt2)^n + B(-sqrt2)^n = (sqrt2)^n [A + B(-1)^n] .$$
          Substituting the initial values $a_0 = a_1 = 1$ gives a linear system in the coefficients $A, B$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Mar 31 at 6:50









          TravisTravis

          64.3k769151




          64.3k769151





















              1












              $begingroup$

              The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




              So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




                So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




                  So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$







                  share|cite|improve this answer









                  $endgroup$



                  The sequence is the powers of two, each repeated twice. We can encode the latter feature using the quantity $lfloor fracn2 rfloor$, which has values $0, 0, 1, 1, 2, 2, ldots$.




                  So, the sequence is given (for appropriate indexing) by $$color#df0000boxeda_n := 2^lfloor n / 2 rfloor .$$








                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 31 at 6:37









                  TravisTravis

                  64.3k769151




                  64.3k769151



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169109%2fhow-to-find-the-nth-term-in-the-following-sequence-1-1-2-2-4-4-8-8-16-16%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                      Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε