Skip to main content

Paul Verhoeven Filmografy | Boek | Keppelings om utens | Navigaasjemenufoegje jo witten hjir taPaul VerhoevenPaul Verhoeven.netPaul Verhoeven

StobbeNederlânsk filmregisseurNederlânsk telefyzjeregisseurGouden Keal-winnerNederlânsk ateïstPersoan berne yn 1938


Amsterdam18 july1938NederlânskefilmregisseurFeriene Steaten












Paul Verhoeven




Ut Wikipedy






Jump to navigation
Jump to search









Paul Verhoeven





Jeroen Krabbé, Paul Verhoeven en Renée Soutendijk


Paul Verhoeven (Amsterdam, 18 july 1938) is in Nederlânske filmregisseur. Yn de Feriene Steaten en Nederlân makke er (kontroversjele) films foar in grut publyk.



Filmografy |



  • 1960 - Een hagedis teveel


  • 1961 - Niets Bijzonders


  • 1962 - De Lifters


  • 1963 - Feest


  • 1965 - Korps Mariniers


  • 1968 - Portret van Anton Adriaan Mussert


  • 1969 - Floris (telefyzje)


  • 1970 - De Worstelaar


  • 1971 - Wat Zien Ik!?


  • 1973 - Turks Fruit


  • 1975 - Keetje Tippel


  • 1977 - Soldaat van Oranje


  • 1979 - Voorbij, voorbij (telefyzjefilm)


  • 1980 - Spetters


  • 1983 - De Vierde Man


  • 1985 - Flesh & Blood


  • 1987 - RoboCop


  • 1990 - Total Recall


  • 1992 - Basic Instinct


  • 1995 - Showgirls


  • 1997 - Starship Troopers


  • 2000 - Hollow Man


  • 2006 - Zwartboek


  • 2010 - The Thomas Crown Affair 2 (komt der oan)


  • 2011 - Steekspel


Boek |



  • Jezus van Nazareth - in realistysk portret, mei Rob van Scheers, útjouwer Meulenhoff, Amsterdam (2008) ISBN 978-90-290-7891-7.


Keppelings om utens |



  • (in) Paul Verhoeven artikel troch pref. Dan Shaw op it webstee "Senses of Cinema"


  • (in) Paul Verhoeven.net fanside

Commons









Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Paul_Verhoeven&oldid=918292"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.032","walltime":"0.050","ppvisitednodes":"value":124,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":1507,"limit":2097152,"templateargumentsize":"value":68,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 12.715 1 -total"," 39.10% 4.971 2 Berjocht:En"," 22.22% 2.825 1 Berjocht:Taalwerjefte"," 21.66% 2.754 1 Berjocht:Stobbe"," 19.55% 2.486 1 Berjocht:Commonscat"," 17.18% 2.184 1 Berjocht:ISBN"],"cachereport":"origin":"mw1257","timestamp":"20190412235727","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Paul Verhoeven","url":"https://fy.wikipedia.org/wiki/Paul_Verhoeven","sameAs":"http://www.wikidata.org/entity/Q129079","mainEntity":"http://www.wikidata.org/entity/Q129079","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2009-07-07T17:54:21Z","dateModified":"2018-05-02T08:26:50Z","image":"https://upload.wikimedia.org/wikipedia/commons/8/89/Paul_Verhoeven.jpg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":215,"wgHostname":"mw1257"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε