Step and piecewise continuous linear function on $[0,1]$ are separable? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Prove integral metric is separableAbout density of some piecewise linear function in some subspace of $C[a,b]$If $f_ncolon [0, 1] to [0, 1]$ are nondecreasing and $f_n$ converges pointwise to a continuous $f$, then the convergence is uniformSeparability of a product metric spacePiecewise linear function close to continuous functionThe Baire space $mathscrN$ is separableStep functions on $[a,b]$ are dense in $mathcal C^0([a,b])$.Show $f(x)=sqrtx$ is continuous on $[0,1]$How can I prove $d_1(x,y) leq n d_infty (x,y)$A normed space is not separable when $ell_infty$ can be embedded isometrically into itContinuous function which is not piecewise monotonous

Do I really need to have a message in a novel to appeal to readers?

Question about debouncing - delay of state change

How does the math work when buying airline miles?

How to tell that you are a giant?

How come Sam didn't become Lord of Horn Hill?

Did Deadpool rescue all of the X-Force?

How to install press fit bottom bracket into new frame

Selecting user stories during sprint planning

What is "gratricide"?

Significance of Cersei's obsession with elephants?

Why do we bend a book to keep it straight?

How can I reduce the gap between left and right of cdot with a macro?

Drawing without replacement: why is the order of draw irrelevant?

Take 2! Is this homebrew Lady of Pain warlock patron balanced?

How much damage would a cupful of neutron star matter do to the Earth?

Why does the remaining Rebel fleet at the end of Rogue One seem dramatically larger than the one in A New Hope?

How do I find out the mythology and history of my Fortress?

Why wasn't DOSKEY integrated with COMMAND.COM?

What is this clumpy 20-30cm high yellow-flowered plant?

Do any jurisdictions seriously consider reclassifying social media websites as publishers?

Can anything be seen from the center of the Boötes void? How dark would it be?

How does light 'choose' between wave and particle behaviour?

How to write this math term? with cases it isn't working

Is there a kind of relay that only consumes power when switching?



Step and piecewise continuous linear function on $[0,1]$ are separable?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Prove integral metric is separableAbout density of some piecewise linear function in some subspace of $C[a,b]$If $f_ncolon [0, 1] to [0, 1]$ are nondecreasing and $f_n$ converges pointwise to a continuous $f$, then the convergence is uniformSeparability of a product metric spacePiecewise linear function close to continuous functionThe Baire space $mathscrN$ is separableStep functions on $[a,b]$ are dense in $mathcal C^0([a,b])$.Show $f(x)=sqrtx$ is continuous on $[0,1]$How can I prove $d_1(x,y) leq n d_infty (x,y)$A normed space is not separable when $ell_infty$ can be embedded isometrically into itContinuous function which is not piecewise monotonous










0












$begingroup$


Given $E[0,1]$ be the set of all step functions on $[0,1]$ and $L[0,1]$ be the set of all piecewise linear continuous functions on $[0,1]$.
Then



(a) $(E [0,1], d_infty)$ is separable?

(b) $(E [0,1], d_1)$ is separable?




(c) $(L [0,1], d_infty)$ is separable?




First all, I am using the following definitions:



1) $(X,d)$ is called a separable metric space if it contains a countable, dense subset.



2) $d_infty: X times Xrightarrow mathbbR$ given by $d_infty(f,g) = sup_x in [0,1]|f(x)-g(x)|$.



3) $d_1 : X times Xrightarrow mathbbR$ given by $d_1(f,g) = int_0^1|f(x)-g(x)|;dx$.



4) $E[0,1]$ is the set of all functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f$ is constant in all open subinterval $(x_i, x_i+1), i = 0, ldots, n$.



5) $L[0,1]$ is the set of all continuous functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f(x) = f(x_i)+
dfrac(f(x_i+1) - f(x_i))x_i+1-x_i(x-x_i)$
if $x in [x_i, x_i+1]$, $0 leq i leq n$.



edit Problem solved.










share|cite|improve this question











$endgroup$











  • $begingroup$
    See tinyurl.com/y2o2t3ky for why $(E([0,1]),d_infty)$ is not separable.
    $endgroup$
    – Josué
    Apr 1 at 20:58










  • $begingroup$
    @Cleric I got it. We take $Y subset E[0,1]$ with $d_infty (f_t, f_s) = 1, forall t neq s$. How Y is uncountable, then $(E[0,1], d_infty)$ is not separable.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 21:58











  • $begingroup$
    Your argument for (b) is wrong. I think you misled yourself by writing $|t-s|=r$, because the distance between $f_t$ and $f_s$ varies with $t$ and $s$, and in particular can become arbitrarily small. To show a set is not separable by this argument, you must find a fixed constant $c$ and an uncountable set of elements for which any pair is more than distance $c$ apart. You have not done that, and in fact it is not possible; $E[0,1]$ is actually separable with respect to the $d_1$ metric.
    $endgroup$
    – Nate Eldredge
    Apr 1 at 23:15











  • $begingroup$
    @NateEldredge Thanks. I understand my wrong. So I need to find a subset dense and countable in $(E[0,1], d_1)$.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:27










  • $begingroup$
    @NateEldredge I found this result math.stackexchange.com/questions/195070/…
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:30















0












$begingroup$


Given $E[0,1]$ be the set of all step functions on $[0,1]$ and $L[0,1]$ be the set of all piecewise linear continuous functions on $[0,1]$.
Then



(a) $(E [0,1], d_infty)$ is separable?

(b) $(E [0,1], d_1)$ is separable?




(c) $(L [0,1], d_infty)$ is separable?




First all, I am using the following definitions:



1) $(X,d)$ is called a separable metric space if it contains a countable, dense subset.



2) $d_infty: X times Xrightarrow mathbbR$ given by $d_infty(f,g) = sup_x in [0,1]|f(x)-g(x)|$.



3) $d_1 : X times Xrightarrow mathbbR$ given by $d_1(f,g) = int_0^1|f(x)-g(x)|;dx$.



4) $E[0,1]$ is the set of all functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f$ is constant in all open subinterval $(x_i, x_i+1), i = 0, ldots, n$.



5) $L[0,1]$ is the set of all continuous functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f(x) = f(x_i)+
dfrac(f(x_i+1) - f(x_i))x_i+1-x_i(x-x_i)$
if $x in [x_i, x_i+1]$, $0 leq i leq n$.



edit Problem solved.










share|cite|improve this question











$endgroup$











  • $begingroup$
    See tinyurl.com/y2o2t3ky for why $(E([0,1]),d_infty)$ is not separable.
    $endgroup$
    – Josué
    Apr 1 at 20:58










  • $begingroup$
    @Cleric I got it. We take $Y subset E[0,1]$ with $d_infty (f_t, f_s) = 1, forall t neq s$. How Y is uncountable, then $(E[0,1], d_infty)$ is not separable.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 21:58











  • $begingroup$
    Your argument for (b) is wrong. I think you misled yourself by writing $|t-s|=r$, because the distance between $f_t$ and $f_s$ varies with $t$ and $s$, and in particular can become arbitrarily small. To show a set is not separable by this argument, you must find a fixed constant $c$ and an uncountable set of elements for which any pair is more than distance $c$ apart. You have not done that, and in fact it is not possible; $E[0,1]$ is actually separable with respect to the $d_1$ metric.
    $endgroup$
    – Nate Eldredge
    Apr 1 at 23:15











  • $begingroup$
    @NateEldredge Thanks. I understand my wrong. So I need to find a subset dense and countable in $(E[0,1], d_1)$.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:27










  • $begingroup$
    @NateEldredge I found this result math.stackexchange.com/questions/195070/…
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:30













0












0








0





$begingroup$


Given $E[0,1]$ be the set of all step functions on $[0,1]$ and $L[0,1]$ be the set of all piecewise linear continuous functions on $[0,1]$.
Then



(a) $(E [0,1], d_infty)$ is separable?

(b) $(E [0,1], d_1)$ is separable?




(c) $(L [0,1], d_infty)$ is separable?




First all, I am using the following definitions:



1) $(X,d)$ is called a separable metric space if it contains a countable, dense subset.



2) $d_infty: X times Xrightarrow mathbbR$ given by $d_infty(f,g) = sup_x in [0,1]|f(x)-g(x)|$.



3) $d_1 : X times Xrightarrow mathbbR$ given by $d_1(f,g) = int_0^1|f(x)-g(x)|;dx$.



4) $E[0,1]$ is the set of all functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f$ is constant in all open subinterval $(x_i, x_i+1), i = 0, ldots, n$.



5) $L[0,1]$ is the set of all continuous functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f(x) = f(x_i)+
dfrac(f(x_i+1) - f(x_i))x_i+1-x_i(x-x_i)$
if $x in [x_i, x_i+1]$, $0 leq i leq n$.



edit Problem solved.










share|cite|improve this question











$endgroup$




Given $E[0,1]$ be the set of all step functions on $[0,1]$ and $L[0,1]$ be the set of all piecewise linear continuous functions on $[0,1]$.
Then



(a) $(E [0,1], d_infty)$ is separable?

(b) $(E [0,1], d_1)$ is separable?




(c) $(L [0,1], d_infty)$ is separable?




First all, I am using the following definitions:



1) $(X,d)$ is called a separable metric space if it contains a countable, dense subset.



2) $d_infty: X times Xrightarrow mathbbR$ given by $d_infty(f,g) = sup_x in [0,1]|f(x)-g(x)|$.



3) $d_1 : X times Xrightarrow mathbbR$ given by $d_1(f,g) = int_0^1|f(x)-g(x)|;dx$.



4) $E[0,1]$ is the set of all functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f$ is constant in all open subinterval $(x_i, x_i+1), i = 0, ldots, n$.



5) $L[0,1]$ is the set of all continuous functions $f:[0,1] rightarrow mathbbR$ such that there are $0 = x_0 < x_1 < cdots < x_n < x_n+1=1$, $n geq 0$, where $f(x) = f(x_i)+
dfrac(f(x_i+1) - f(x_i))x_i+1-x_i(x-x_i)$
if $x in [x_i, x_i+1]$, $0 leq i leq n$.



edit Problem solved.







real-analysis analysis metric-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 3 at 14:54







Thiago Alexandre

















asked Apr 1 at 19:13









Thiago AlexandreThiago Alexandre

1347




1347











  • $begingroup$
    See tinyurl.com/y2o2t3ky for why $(E([0,1]),d_infty)$ is not separable.
    $endgroup$
    – Josué
    Apr 1 at 20:58










  • $begingroup$
    @Cleric I got it. We take $Y subset E[0,1]$ with $d_infty (f_t, f_s) = 1, forall t neq s$. How Y is uncountable, then $(E[0,1], d_infty)$ is not separable.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 21:58











  • $begingroup$
    Your argument for (b) is wrong. I think you misled yourself by writing $|t-s|=r$, because the distance between $f_t$ and $f_s$ varies with $t$ and $s$, and in particular can become arbitrarily small. To show a set is not separable by this argument, you must find a fixed constant $c$ and an uncountable set of elements for which any pair is more than distance $c$ apart. You have not done that, and in fact it is not possible; $E[0,1]$ is actually separable with respect to the $d_1$ metric.
    $endgroup$
    – Nate Eldredge
    Apr 1 at 23:15











  • $begingroup$
    @NateEldredge Thanks. I understand my wrong. So I need to find a subset dense and countable in $(E[0,1], d_1)$.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:27










  • $begingroup$
    @NateEldredge I found this result math.stackexchange.com/questions/195070/…
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:30
















  • $begingroup$
    See tinyurl.com/y2o2t3ky for why $(E([0,1]),d_infty)$ is not separable.
    $endgroup$
    – Josué
    Apr 1 at 20:58










  • $begingroup$
    @Cleric I got it. We take $Y subset E[0,1]$ with $d_infty (f_t, f_s) = 1, forall t neq s$. How Y is uncountable, then $(E[0,1], d_infty)$ is not separable.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 21:58











  • $begingroup$
    Your argument for (b) is wrong. I think you misled yourself by writing $|t-s|=r$, because the distance between $f_t$ and $f_s$ varies with $t$ and $s$, and in particular can become arbitrarily small. To show a set is not separable by this argument, you must find a fixed constant $c$ and an uncountable set of elements for which any pair is more than distance $c$ apart. You have not done that, and in fact it is not possible; $E[0,1]$ is actually separable with respect to the $d_1$ metric.
    $endgroup$
    – Nate Eldredge
    Apr 1 at 23:15











  • $begingroup$
    @NateEldredge Thanks. I understand my wrong. So I need to find a subset dense and countable in $(E[0,1], d_1)$.
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:27










  • $begingroup$
    @NateEldredge I found this result math.stackexchange.com/questions/195070/…
    $endgroup$
    – Thiago Alexandre
    Apr 1 at 23:30















$begingroup$
See tinyurl.com/y2o2t3ky for why $(E([0,1]),d_infty)$ is not separable.
$endgroup$
– Josué
Apr 1 at 20:58




$begingroup$
See tinyurl.com/y2o2t3ky for why $(E([0,1]),d_infty)$ is not separable.
$endgroup$
– Josué
Apr 1 at 20:58












$begingroup$
@Cleric I got it. We take $Y subset E[0,1]$ with $d_infty (f_t, f_s) = 1, forall t neq s$. How Y is uncountable, then $(E[0,1], d_infty)$ is not separable.
$endgroup$
– Thiago Alexandre
Apr 1 at 21:58





$begingroup$
@Cleric I got it. We take $Y subset E[0,1]$ with $d_infty (f_t, f_s) = 1, forall t neq s$. How Y is uncountable, then $(E[0,1], d_infty)$ is not separable.
$endgroup$
– Thiago Alexandre
Apr 1 at 21:58













$begingroup$
Your argument for (b) is wrong. I think you misled yourself by writing $|t-s|=r$, because the distance between $f_t$ and $f_s$ varies with $t$ and $s$, and in particular can become arbitrarily small. To show a set is not separable by this argument, you must find a fixed constant $c$ and an uncountable set of elements for which any pair is more than distance $c$ apart. You have not done that, and in fact it is not possible; $E[0,1]$ is actually separable with respect to the $d_1$ metric.
$endgroup$
– Nate Eldredge
Apr 1 at 23:15





$begingroup$
Your argument for (b) is wrong. I think you misled yourself by writing $|t-s|=r$, because the distance between $f_t$ and $f_s$ varies with $t$ and $s$, and in particular can become arbitrarily small. To show a set is not separable by this argument, you must find a fixed constant $c$ and an uncountable set of elements for which any pair is more than distance $c$ apart. You have not done that, and in fact it is not possible; $E[0,1]$ is actually separable with respect to the $d_1$ metric.
$endgroup$
– Nate Eldredge
Apr 1 at 23:15













$begingroup$
@NateEldredge Thanks. I understand my wrong. So I need to find a subset dense and countable in $(E[0,1], d_1)$.
$endgroup$
– Thiago Alexandre
Apr 1 at 23:27




$begingroup$
@NateEldredge Thanks. I understand my wrong. So I need to find a subset dense and countable in $(E[0,1], d_1)$.
$endgroup$
– Thiago Alexandre
Apr 1 at 23:27












$begingroup$
@NateEldredge I found this result math.stackexchange.com/questions/195070/…
$endgroup$
– Thiago Alexandre
Apr 1 at 23:30




$begingroup$
@NateEldredge I found this result math.stackexchange.com/questions/195070/…
$endgroup$
– Thiago Alexandre
Apr 1 at 23:30










1 Answer
1






active

oldest

votes


















0












$begingroup$

Let $$mathscr P_n=0=x_0<x_1<cdots<x_n<x_n+1=1:x_iinmathbb Q,$$ let $$mathscr P=bigcup_n=0^inftymathscr P_n,$$ let $$mathscr Q_P=(x_i,x_i+1)_i=0^ntext for every P=0=x_0<x_1<cdots<x_n<x_n+1=1inmathscr P,$$ and let $$S=f:[0,1]tomathbb Q:Pinmathscr Ptext and ftext is constant on every Iinmathscr Q_P.$$ Can you show that $S$ is a countable, dense subset of $E[0,1]$ with respect to the $d_1$ metric?



Alternatively, you can show that $[0,1]$ is a separable measure space, so that $L^1[0,1]supset E[0,1]$ is separable and thus $E[0,1]$ is separable.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
    $endgroup$
    – Thiago Alexandre
    Apr 2 at 0:50







  • 1




    $begingroup$
    I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
    $endgroup$
    – Thiago Alexandre
    Apr 3 at 14:42











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171041%2fstep-and-piecewise-continuous-linear-function-on-0-1-are-separable%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Let $$mathscr P_n=0=x_0<x_1<cdots<x_n<x_n+1=1:x_iinmathbb Q,$$ let $$mathscr P=bigcup_n=0^inftymathscr P_n,$$ let $$mathscr Q_P=(x_i,x_i+1)_i=0^ntext for every P=0=x_0<x_1<cdots<x_n<x_n+1=1inmathscr P,$$ and let $$S=f:[0,1]tomathbb Q:Pinmathscr Ptext and ftext is constant on every Iinmathscr Q_P.$$ Can you show that $S$ is a countable, dense subset of $E[0,1]$ with respect to the $d_1$ metric?



Alternatively, you can show that $[0,1]$ is a separable measure space, so that $L^1[0,1]supset E[0,1]$ is separable and thus $E[0,1]$ is separable.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
    $endgroup$
    – Thiago Alexandre
    Apr 2 at 0:50







  • 1




    $begingroup$
    I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
    $endgroup$
    – Thiago Alexandre
    Apr 3 at 14:42















0












$begingroup$

Let $$mathscr P_n=0=x_0<x_1<cdots<x_n<x_n+1=1:x_iinmathbb Q,$$ let $$mathscr P=bigcup_n=0^inftymathscr P_n,$$ let $$mathscr Q_P=(x_i,x_i+1)_i=0^ntext for every P=0=x_0<x_1<cdots<x_n<x_n+1=1inmathscr P,$$ and let $$S=f:[0,1]tomathbb Q:Pinmathscr Ptext and ftext is constant on every Iinmathscr Q_P.$$ Can you show that $S$ is a countable, dense subset of $E[0,1]$ with respect to the $d_1$ metric?



Alternatively, you can show that $[0,1]$ is a separable measure space, so that $L^1[0,1]supset E[0,1]$ is separable and thus $E[0,1]$ is separable.






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    $S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
    $endgroup$
    – Thiago Alexandre
    Apr 2 at 0:50







  • 1




    $begingroup$
    I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
    $endgroup$
    – Thiago Alexandre
    Apr 3 at 14:42













0












0








0





$begingroup$

Let $$mathscr P_n=0=x_0<x_1<cdots<x_n<x_n+1=1:x_iinmathbb Q,$$ let $$mathscr P=bigcup_n=0^inftymathscr P_n,$$ let $$mathscr Q_P=(x_i,x_i+1)_i=0^ntext for every P=0=x_0<x_1<cdots<x_n<x_n+1=1inmathscr P,$$ and let $$S=f:[0,1]tomathbb Q:Pinmathscr Ptext and ftext is constant on every Iinmathscr Q_P.$$ Can you show that $S$ is a countable, dense subset of $E[0,1]$ with respect to the $d_1$ metric?



Alternatively, you can show that $[0,1]$ is a separable measure space, so that $L^1[0,1]supset E[0,1]$ is separable and thus $E[0,1]$ is separable.






share|cite|improve this answer











$endgroup$



Let $$mathscr P_n=0=x_0<x_1<cdots<x_n<x_n+1=1:x_iinmathbb Q,$$ let $$mathscr P=bigcup_n=0^inftymathscr P_n,$$ let $$mathscr Q_P=(x_i,x_i+1)_i=0^ntext for every P=0=x_0<x_1<cdots<x_n<x_n+1=1inmathscr P,$$ and let $$S=f:[0,1]tomathbb Q:Pinmathscr Ptext and ftext is constant on every Iinmathscr Q_P.$$ Can you show that $S$ is a countable, dense subset of $E[0,1]$ with respect to the $d_1$ metric?



Alternatively, you can show that $[0,1]$ is a separable measure space, so that $L^1[0,1]supset E[0,1]$ is separable and thus $E[0,1]$ is separable.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 2 at 0:36

























answered Apr 2 at 0:18









JosuéJosué

3,49742672




3,49742672







  • 1




    $begingroup$
    $S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
    $endgroup$
    – Thiago Alexandre
    Apr 2 at 0:50







  • 1




    $begingroup$
    I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
    $endgroup$
    – Thiago Alexandre
    Apr 3 at 14:42












  • 1




    $begingroup$
    $S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
    $endgroup$
    – Thiago Alexandre
    Apr 2 at 0:50







  • 1




    $begingroup$
    I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
    $endgroup$
    – Thiago Alexandre
    Apr 3 at 14:42







1




1




$begingroup$
$S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
$endgroup$
– Thiago Alexandre
Apr 2 at 0:50





$begingroup$
$S$ is countable because it is taken on all countable partitions $P$ and $S$ is dense because given $epsilon > 0$, $g in E[0,1]$, there is a $f in S$ such that $int_0^1|f(x)-g(x)|;dx < epsilon$. This is because $g$ has a finite partition $P$ and there is a partition $P_n$ of rational ones that approximate $f$ of $g$ making the integral as small as it wants. Is it make sense?
$endgroup$
– Thiago Alexandre
Apr 2 at 0:50





1




1




$begingroup$
I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
$endgroup$
– Thiago Alexandre
Apr 3 at 14:42




$begingroup$
I got it. For any step function $f in E[0,1]$ there is a partition $P$ that approaches by rational numbers for the partition of $f$ function. So, we have $g in S$ such that $d_1(f,g) = |c_1 - q_1| + |c_2 - q_2| + cdots + |c_n+1-q_n+1| < epsilon$ because each parcel |c_i - q_i| we can get that is smaller than $fracepsilonn+1$.
$endgroup$
– Thiago Alexandre
Apr 3 at 14:42

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171041%2fstep-and-piecewise-continuous-linear-function-on-0-1-are-separable%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu