Sequence $lim_ntoinfty(-1)^n fracsin (n)n^2$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Using the Test for DivergenceShow by comparison that $sumlimits_n=1^infty sin(frac1n)$ diverges?Convergence tests $sum_n=1^infty fracsin(n)n$Determining whether $ displaystyle sum_n = 0^infty 4cos(2pi n)e^-3n $ divergesDoes $sum_n=1^inftyln(nsin(frac1n))$ converge?Does $sumlimits_n=1^inftysin(n)sinleft(fracpi2nright)$ converge?Convergence of $sum_n=1^inftyfrac1(3n+8)!$A Sequence converges or divergesDetermine whether $sum_n=1^infty frac2sqrtn+2 $ converges or diverges?Show if the series $sum _n=1^infty frac 39n+1$ converges or diverges.

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

As a beginner, should I get a Squier Strat with a SSS config or a HSS?

How can I reduce the gap between left and right of cdot with a macro?

Do wooden building fires get hotter than 600°C?

Why is my ESD wriststrap failing with nitrile gloves on?

Why do we need to use the builder design pattern when we can do the same thing with setters?

The code below, is it ill-formed NDR or is it well formed?

What is a fractional matching?

Performance gap between vector<bool> and array

Can a new player join a group only when a new campaign starts?

How does light 'choose' between wave and particle behaviour?

What is the difference between globalisation and imperialism?

How to compare two different files line by line in unix?

Localisation of Category

Do I really need to have a message in a novel to appeal to readers?

How does the math work when buying airline miles?

How come Sam didn't become Lord of Horn Hill?

How to install press fit bottom bracket into new frame

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

Project Euler #1 in C++

Chinese Seal on silk painting - what does it mean?

What is this clumpy 20-30cm high yellow-flowered plant?

Why is it faster to reheat something than it is to cook it?

Selecting user stories during sprint planning



Sequence $lim_ntoinfty(-1)^n fracsin (n)n^2$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Using the Test for DivergenceShow by comparison that $sumlimits_n=1^infty sin(frac1n)$ diverges?Convergence tests $sum_n=1^infty fracsin(n)n$Determining whether $ displaystyle sum_n = 0^infty 4cos(2pi n)e^-3n $ divergesDoes $sum_n=1^inftyln(nsin(frac1n))$ converge?Does $sumlimits_n=1^inftysin(n)sinleft(fracpi2nright)$ converge?Convergence of $sum_n=1^inftyfrac1(3n+8)!$A Sequence converges or divergesDetermine whether $sum_n=1^infty frac2sqrtn+2 $ converges or diverges?Show if the series $sum _n=1^infty frac 39n+1$ converges or diverges.










0












$begingroup$


So I have this problem and I need some help on it.



$$lim_ntoinfty(-1)^n fracsin (n)n^2$$



So for this, I know that the sin value will always be between -1 < n < 1.



And the series only converges if the limit is equal to 0, otherwise, it diverges by Divergence Test.



The problem is that I am having trouble taking the limit of the function:
$$lim_ntoinftyfracsin(n)n^2$$



So if anyone has any suggestions on how I may accomplish this, that would be great.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Actually, you don't have $-1 < n <1$ but rather $-1 le sin n le 1.$
    $endgroup$
    – CiaPan
    Apr 1 at 18:45










  • $begingroup$
    Ah, I see thanks for the clarification.
    $endgroup$
    – Christian Martinez
    Apr 1 at 18:48















0












$begingroup$


So I have this problem and I need some help on it.



$$lim_ntoinfty(-1)^n fracsin (n)n^2$$



So for this, I know that the sin value will always be between -1 < n < 1.



And the series only converges if the limit is equal to 0, otherwise, it diverges by Divergence Test.



The problem is that I am having trouble taking the limit of the function:
$$lim_ntoinftyfracsin(n)n^2$$



So if anyone has any suggestions on how I may accomplish this, that would be great.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Actually, you don't have $-1 < n <1$ but rather $-1 le sin n le 1.$
    $endgroup$
    – CiaPan
    Apr 1 at 18:45










  • $begingroup$
    Ah, I see thanks for the clarification.
    $endgroup$
    – Christian Martinez
    Apr 1 at 18:48













0












0








0





$begingroup$


So I have this problem and I need some help on it.



$$lim_ntoinfty(-1)^n fracsin (n)n^2$$



So for this, I know that the sin value will always be between -1 < n < 1.



And the series only converges if the limit is equal to 0, otherwise, it diverges by Divergence Test.



The problem is that I am having trouble taking the limit of the function:
$$lim_ntoinftyfracsin(n)n^2$$



So if anyone has any suggestions on how I may accomplish this, that would be great.










share|cite|improve this question











$endgroup$




So I have this problem and I need some help on it.



$$lim_ntoinfty(-1)^n fracsin (n)n^2$$



So for this, I know that the sin value will always be between -1 < n < 1.



And the series only converges if the limit is equal to 0, otherwise, it diverges by Divergence Test.



The problem is that I am having trouble taking the limit of the function:
$$lim_ntoinftyfracsin(n)n^2$$



So if anyone has any suggestions on how I may accomplish this, that would be great.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 1 at 18:39









Bernard

124k742117




124k742117










asked Apr 1 at 18:37









Christian MartinezChristian Martinez

648




648











  • $begingroup$
    Actually, you don't have $-1 < n <1$ but rather $-1 le sin n le 1.$
    $endgroup$
    – CiaPan
    Apr 1 at 18:45










  • $begingroup$
    Ah, I see thanks for the clarification.
    $endgroup$
    – Christian Martinez
    Apr 1 at 18:48
















  • $begingroup$
    Actually, you don't have $-1 < n <1$ but rather $-1 le sin n le 1.$
    $endgroup$
    – CiaPan
    Apr 1 at 18:45










  • $begingroup$
    Ah, I see thanks for the clarification.
    $endgroup$
    – Christian Martinez
    Apr 1 at 18:48















$begingroup$
Actually, you don't have $-1 < n <1$ but rather $-1 le sin n le 1.$
$endgroup$
– CiaPan
Apr 1 at 18:45




$begingroup$
Actually, you don't have $-1 < n <1$ but rather $-1 le sin n le 1.$
$endgroup$
– CiaPan
Apr 1 at 18:45












$begingroup$
Ah, I see thanks for the clarification.
$endgroup$
– Christian Martinez
Apr 1 at 18:48




$begingroup$
Ah, I see thanks for the clarification.
$endgroup$
– Christian Martinez
Apr 1 at 18:48










3 Answers
3






active

oldest

votes


















4












$begingroup$

Guide:



  • Note that

$$left|fracsin nn^2right| le frac1n^2$$






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
    $endgroup$
    – Christian Martinez
    Apr 1 at 18:41







  • 1




    $begingroup$
    yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
    $endgroup$
    – Siong Thye Goh
    Apr 1 at 18:42







  • 1




    $begingroup$
    Alright, thanks!
    $endgroup$
    – Christian Martinez
    Apr 1 at 18:43


















4












$begingroup$

We need to observe that $$frac-1n^2 leq frac(-1)^nsin(n)n^2 leq frac1n^2$$



Since $lim_n to infty frac-1n^2 = lim_n to infty frac1n^2 = 0$, it follows by the squeeze theorem that
$$lim_n to infty frac(-1)^nsin(n)n^2 = 0$$






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    If you know that for some positive $M$, $-Mleq f(x)leq M$ for all $x$, then $-Mleq lim_xrightarrowinftyf(x)leq M$.



    Now use the fact that $-1 leq (-1)^nsin(n)leq 1$ and $lim_nrightarrowinftyfrac 1 n^2=0$ to conclude that the answer to your question is zero.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170980%2fsequence-lim-n-to-infty-1n-frac-sin-nn2%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      Guide:



      • Note that

      $$left|fracsin nn^2right| le frac1n^2$$






      share|cite|improve this answer









      $endgroup$








      • 1




        $begingroup$
        So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:41







      • 1




        $begingroup$
        yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
        $endgroup$
        – Siong Thye Goh
        Apr 1 at 18:42







      • 1




        $begingroup$
        Alright, thanks!
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:43















      4












      $begingroup$

      Guide:



      • Note that

      $$left|fracsin nn^2right| le frac1n^2$$






      share|cite|improve this answer









      $endgroup$








      • 1




        $begingroup$
        So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:41







      • 1




        $begingroup$
        yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
        $endgroup$
        – Siong Thye Goh
        Apr 1 at 18:42







      • 1




        $begingroup$
        Alright, thanks!
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:43













      4












      4








      4





      $begingroup$

      Guide:



      • Note that

      $$left|fracsin nn^2right| le frac1n^2$$






      share|cite|improve this answer









      $endgroup$



      Guide:



      • Note that

      $$left|fracsin nn^2right| le frac1n^2$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Apr 1 at 18:39









      Siong Thye GohSiong Thye Goh

      104k1468120




      104k1468120







      • 1




        $begingroup$
        So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:41







      • 1




        $begingroup$
        yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
        $endgroup$
        – Siong Thye Goh
        Apr 1 at 18:42







      • 1




        $begingroup$
        Alright, thanks!
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:43












      • 1




        $begingroup$
        So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:41







      • 1




        $begingroup$
        yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
        $endgroup$
        – Siong Thye Goh
        Apr 1 at 18:42







      • 1




        $begingroup$
        Alright, thanks!
        $endgroup$
        – Christian Martinez
        Apr 1 at 18:43







      1




      1




      $begingroup$
      So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
      $endgroup$
      – Christian Martinez
      Apr 1 at 18:41





      $begingroup$
      So would I take the limit of $$frac1n^2$$ which is 0. So then the sequence converges -- this is squeeze theorem right?
      $endgroup$
      – Christian Martinez
      Apr 1 at 18:41





      1




      1




      $begingroup$
      yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
      $endgroup$
      – Siong Thye Goh
      Apr 1 at 18:42





      $begingroup$
      yup, after you show that the absolute value of $|a_n|$ converges to $0$, you can conclude that $a_n$ converges to $0$ as well. Alternatively, view it as $-frac1n^2 le fracsin nn^2 le frac1n^2$.
      $endgroup$
      – Siong Thye Goh
      Apr 1 at 18:42





      1




      1




      $begingroup$
      Alright, thanks!
      $endgroup$
      – Christian Martinez
      Apr 1 at 18:43




      $begingroup$
      Alright, thanks!
      $endgroup$
      – Christian Martinez
      Apr 1 at 18:43











      4












      $begingroup$

      We need to observe that $$frac-1n^2 leq frac(-1)^nsin(n)n^2 leq frac1n^2$$



      Since $lim_n to infty frac-1n^2 = lim_n to infty frac1n^2 = 0$, it follows by the squeeze theorem that
      $$lim_n to infty frac(-1)^nsin(n)n^2 = 0$$






      share|cite|improve this answer









      $endgroup$

















        4












        $begingroup$

        We need to observe that $$frac-1n^2 leq frac(-1)^nsin(n)n^2 leq frac1n^2$$



        Since $lim_n to infty frac-1n^2 = lim_n to infty frac1n^2 = 0$, it follows by the squeeze theorem that
        $$lim_n to infty frac(-1)^nsin(n)n^2 = 0$$






        share|cite|improve this answer









        $endgroup$















          4












          4








          4





          $begingroup$

          We need to observe that $$frac-1n^2 leq frac(-1)^nsin(n)n^2 leq frac1n^2$$



          Since $lim_n to infty frac-1n^2 = lim_n to infty frac1n^2 = 0$, it follows by the squeeze theorem that
          $$lim_n to infty frac(-1)^nsin(n)n^2 = 0$$






          share|cite|improve this answer









          $endgroup$



          We need to observe that $$frac-1n^2 leq frac(-1)^nsin(n)n^2 leq frac1n^2$$



          Since $lim_n to infty frac-1n^2 = lim_n to infty frac1n^2 = 0$, it follows by the squeeze theorem that
          $$lim_n to infty frac(-1)^nsin(n)n^2 = 0$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 1 at 18:43









          user516079user516079

          537311




          537311





















              0












              $begingroup$

              If you know that for some positive $M$, $-Mleq f(x)leq M$ for all $x$, then $-Mleq lim_xrightarrowinftyf(x)leq M$.



              Now use the fact that $-1 leq (-1)^nsin(n)leq 1$ and $lim_nrightarrowinftyfrac 1 n^2=0$ to conclude that the answer to your question is zero.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                If you know that for some positive $M$, $-Mleq f(x)leq M$ for all $x$, then $-Mleq lim_xrightarrowinftyf(x)leq M$.



                Now use the fact that $-1 leq (-1)^nsin(n)leq 1$ and $lim_nrightarrowinftyfrac 1 n^2=0$ to conclude that the answer to your question is zero.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  If you know that for some positive $M$, $-Mleq f(x)leq M$ for all $x$, then $-Mleq lim_xrightarrowinftyf(x)leq M$.



                  Now use the fact that $-1 leq (-1)^nsin(n)leq 1$ and $lim_nrightarrowinftyfrac 1 n^2=0$ to conclude that the answer to your question is zero.






                  share|cite|improve this answer









                  $endgroup$



                  If you know that for some positive $M$, $-Mleq f(x)leq M$ for all $x$, then $-Mleq lim_xrightarrowinftyf(x)leq M$.



                  Now use the fact that $-1 leq (-1)^nsin(n)leq 1$ and $lim_nrightarrowinftyfrac 1 n^2=0$ to conclude that the answer to your question is zero.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 1 at 18:48









                  zornzorn

                  516




                  516



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170980%2fsequence-lim-n-to-infty-1n-frac-sin-nn2%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu