Polynomials vector space and direct sums Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Find proper subsets of a vector spaceVector space of polynomials with given rootNumber of irreducible polynomials of degree $3$ over $mathbbF_3$ and $mathbbF_5$.Explanation of direct sums (linear vector spaces)Vector groups' spans - proof of direct sumProving that subspaces of space of all polynomials $mathcalP$ is a vector spaceProving/disproving that a set is a vector spaceDirect sum of $T - invariant $ subspacesUnderstanding a question about vector space and subspaceShowing injective property of derivative map over vector space of polynomials

Sum letters are not two different

How much damage would a cupful of neutron star matter do to the Earth?

What is "gratricide"?

An adverb for when you're not exaggerating

Is grep documentation about ignoring case wrong, since it doesn't ignore case in filenames?

How would a mousetrap for use in space work?

Find 108 by using 3,4,6

Why take crypto profits when you can just set a stop order?

How often does castling occur in grandmaster games?

Why aren't air breathing engines used as small first stages?

What is this clumpy 20-30cm high yellow-flowered plant?

How were pictures turned from film to a big picture in a picture frame before digital scanning?

Do any jurisdictions seriously consider reclassifying social media websites as publishers?

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

Can a new player join a group only when a new campaign starts?

What would you call this weird metallic apparatus that allows you to lift people?

How does light 'choose' between wave and particle behaviour?

Selecting user stories during sprint planning

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

How fail-safe is nr as stop bytes?

How do I use the new nonlinear finite element in Mathematica 12 for this equation?

Localisation of Category

Effects on objects due to a brief relocation of massive amounts of mass

Amount of permutations on an NxNxN Rubik's Cube



Polynomials vector space and direct sums



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Find proper subsets of a vector spaceVector space of polynomials with given rootNumber of irreducible polynomials of degree $3$ over $mathbbF_3$ and $mathbbF_5$.Explanation of direct sums (linear vector spaces)Vector groups' spans - proof of direct sumProving that subspaces of space of all polynomials $mathcalP$ is a vector spaceProving/disproving that a set is a vector spaceDirect sum of $T - invariant $ subspacesUnderstanding a question about vector space and subspaceShowing injective property of derivative map over vector space of polynomials










0












$begingroup$


I'm trying to solve this question here:



Let $V = F_n-1left [ x right ]$ over some field F (i.e. V is the vector space of all polynomials with degree smaller or equal to n-1), and $x_1, x_2, ..., x_n in F$ be n different scalars. Assume $A_1, ... , A_k$ are disjoint sets, such as $left x_1,...,x_n right = sqcup _i=1^k A_i$.
Define $V_i = left p(x)in V mid forall x_j notin A_i, p(x_j) = 0 right $.



We need to prove that $V = oplus _i=1^k V_i$.



I managed to prove this in the case in which $k=n, A_i = left x_i right $, but I'm having trouble how to use this in order to prove the general case.










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    I'm trying to solve this question here:



    Let $V = F_n-1left [ x right ]$ over some field F (i.e. V is the vector space of all polynomials with degree smaller or equal to n-1), and $x_1, x_2, ..., x_n in F$ be n different scalars. Assume $A_1, ... , A_k$ are disjoint sets, such as $left x_1,...,x_n right = sqcup _i=1^k A_i$.
    Define $V_i = left p(x)in V mid forall x_j notin A_i, p(x_j) = 0 right $.



    We need to prove that $V = oplus _i=1^k V_i$.



    I managed to prove this in the case in which $k=n, A_i = left x_i right $, but I'm having trouble how to use this in order to prove the general case.










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      I'm trying to solve this question here:



      Let $V = F_n-1left [ x right ]$ over some field F (i.e. V is the vector space of all polynomials with degree smaller or equal to n-1), and $x_1, x_2, ..., x_n in F$ be n different scalars. Assume $A_1, ... , A_k$ are disjoint sets, such as $left x_1,...,x_n right = sqcup _i=1^k A_i$.
      Define $V_i = left p(x)in V mid forall x_j notin A_i, p(x_j) = 0 right $.



      We need to prove that $V = oplus _i=1^k V_i$.



      I managed to prove this in the case in which $k=n, A_i = left x_i right $, but I'm having trouble how to use this in order to prove the general case.










      share|cite|improve this question









      $endgroup$




      I'm trying to solve this question here:



      Let $V = F_n-1left [ x right ]$ over some field F (i.e. V is the vector space of all polynomials with degree smaller or equal to n-1), and $x_1, x_2, ..., x_n in F$ be n different scalars. Assume $A_1, ... , A_k$ are disjoint sets, such as $left x_1,...,x_n right = sqcup _i=1^k A_i$.
      Define $V_i = left p(x)in V mid forall x_j notin A_i, p(x_j) = 0 right $.



      We need to prove that $V = oplus _i=1^k V_i$.



      I managed to prove this in the case in which $k=n, A_i = left x_i right $, but I'm having trouble how to use this in order to prove the general case.







      linear-algebra polynomials vector-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 1 at 18:07









      az_azazaz_azaz

      32




      32




















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          The nice thing about this question is you can be extremely concrete. Taking the $k=n$, $A_i=x_i$ case, we see that we have a basis $e_i(x)=prod_ineq j frac(x-x_j)x_i-x_j$ of $V$. (Clearly each $e_iin V_i$, $e_i(x_i)=1$, and moreover if $sum_j a_j e_j(x)=0$, then evaluating at $x_i$, $a_i=sum a_j e_j(x_i)=0$. Since we have $n$ linearly independent vectors in an $n$-dimensional space, it is a basis.)



          Now we apply this to the general case by expressing everything in this basis. First, we have $V_i=bigoplus_x_jin A_i F e_j(x)$. Indeed, clearly each $e_jin V_i$ if $x_jin A_i$, and conversely any $p(x)in V_i$ can be written $p(x)=sum a_i e_i(x)$, and satisfies $0=p(x_j)=a_j$ for $x_jnotin A_i$, hence must be in the span of the $e_j$ with $x_jin A_i$.



          Finally, note that the span of the $V_i$ contains the span of the basis, hence $sum V_i=V$, and since $V_i$ and $V_j$ contain distinct basis elements when $ineq j$ (due to the disjointness of $A_i$ and $A_j$), $V_icap V_j=emptyset$. The result follows.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            For each $jin1,2,ldots,k$, $dim V_j=n-(n-#A_j)=#A_j$. And it is not hard to prove that $ineq jimplies V_icap V_j=0$. So,beginaligndimleft(bigoplus_j=1^kV_jright)&=sum_j=1^kdim V_j\&=sum_j=1^k#A_j\&=nendalignand therefore $bigoplus_j=1^kV_j=V$.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170938%2fpolynomials-vector-space-and-direct-sums%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              The nice thing about this question is you can be extremely concrete. Taking the $k=n$, $A_i=x_i$ case, we see that we have a basis $e_i(x)=prod_ineq j frac(x-x_j)x_i-x_j$ of $V$. (Clearly each $e_iin V_i$, $e_i(x_i)=1$, and moreover if $sum_j a_j e_j(x)=0$, then evaluating at $x_i$, $a_i=sum a_j e_j(x_i)=0$. Since we have $n$ linearly independent vectors in an $n$-dimensional space, it is a basis.)



              Now we apply this to the general case by expressing everything in this basis. First, we have $V_i=bigoplus_x_jin A_i F e_j(x)$. Indeed, clearly each $e_jin V_i$ if $x_jin A_i$, and conversely any $p(x)in V_i$ can be written $p(x)=sum a_i e_i(x)$, and satisfies $0=p(x_j)=a_j$ for $x_jnotin A_i$, hence must be in the span of the $e_j$ with $x_jin A_i$.



              Finally, note that the span of the $V_i$ contains the span of the basis, hence $sum V_i=V$, and since $V_i$ and $V_j$ contain distinct basis elements when $ineq j$ (due to the disjointness of $A_i$ and $A_j$), $V_icap V_j=emptyset$. The result follows.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                The nice thing about this question is you can be extremely concrete. Taking the $k=n$, $A_i=x_i$ case, we see that we have a basis $e_i(x)=prod_ineq j frac(x-x_j)x_i-x_j$ of $V$. (Clearly each $e_iin V_i$, $e_i(x_i)=1$, and moreover if $sum_j a_j e_j(x)=0$, then evaluating at $x_i$, $a_i=sum a_j e_j(x_i)=0$. Since we have $n$ linearly independent vectors in an $n$-dimensional space, it is a basis.)



                Now we apply this to the general case by expressing everything in this basis. First, we have $V_i=bigoplus_x_jin A_i F e_j(x)$. Indeed, clearly each $e_jin V_i$ if $x_jin A_i$, and conversely any $p(x)in V_i$ can be written $p(x)=sum a_i e_i(x)$, and satisfies $0=p(x_j)=a_j$ for $x_jnotin A_i$, hence must be in the span of the $e_j$ with $x_jin A_i$.



                Finally, note that the span of the $V_i$ contains the span of the basis, hence $sum V_i=V$, and since $V_i$ and $V_j$ contain distinct basis elements when $ineq j$ (due to the disjointness of $A_i$ and $A_j$), $V_icap V_j=emptyset$. The result follows.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  The nice thing about this question is you can be extremely concrete. Taking the $k=n$, $A_i=x_i$ case, we see that we have a basis $e_i(x)=prod_ineq j frac(x-x_j)x_i-x_j$ of $V$. (Clearly each $e_iin V_i$, $e_i(x_i)=1$, and moreover if $sum_j a_j e_j(x)=0$, then evaluating at $x_i$, $a_i=sum a_j e_j(x_i)=0$. Since we have $n$ linearly independent vectors in an $n$-dimensional space, it is a basis.)



                  Now we apply this to the general case by expressing everything in this basis. First, we have $V_i=bigoplus_x_jin A_i F e_j(x)$. Indeed, clearly each $e_jin V_i$ if $x_jin A_i$, and conversely any $p(x)in V_i$ can be written $p(x)=sum a_i e_i(x)$, and satisfies $0=p(x_j)=a_j$ for $x_jnotin A_i$, hence must be in the span of the $e_j$ with $x_jin A_i$.



                  Finally, note that the span of the $V_i$ contains the span of the basis, hence $sum V_i=V$, and since $V_i$ and $V_j$ contain distinct basis elements when $ineq j$ (due to the disjointness of $A_i$ and $A_j$), $V_icap V_j=emptyset$. The result follows.






                  share|cite|improve this answer









                  $endgroup$



                  The nice thing about this question is you can be extremely concrete. Taking the $k=n$, $A_i=x_i$ case, we see that we have a basis $e_i(x)=prod_ineq j frac(x-x_j)x_i-x_j$ of $V$. (Clearly each $e_iin V_i$, $e_i(x_i)=1$, and moreover if $sum_j a_j e_j(x)=0$, then evaluating at $x_i$, $a_i=sum a_j e_j(x_i)=0$. Since we have $n$ linearly independent vectors in an $n$-dimensional space, it is a basis.)



                  Now we apply this to the general case by expressing everything in this basis. First, we have $V_i=bigoplus_x_jin A_i F e_j(x)$. Indeed, clearly each $e_jin V_i$ if $x_jin A_i$, and conversely any $p(x)in V_i$ can be written $p(x)=sum a_i e_i(x)$, and satisfies $0=p(x_j)=a_j$ for $x_jnotin A_i$, hence must be in the span of the $e_j$ with $x_jin A_i$.



                  Finally, note that the span of the $V_i$ contains the span of the basis, hence $sum V_i=V$, and since $V_i$ and $V_j$ contain distinct basis elements when $ineq j$ (due to the disjointness of $A_i$ and $A_j$), $V_icap V_j=emptyset$. The result follows.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 1 at 18:42









                  Sean ClarkSean Clark

                  2,093813




                  2,093813





















                      1












                      $begingroup$

                      For each $jin1,2,ldots,k$, $dim V_j=n-(n-#A_j)=#A_j$. And it is not hard to prove that $ineq jimplies V_icap V_j=0$. So,beginaligndimleft(bigoplus_j=1^kV_jright)&=sum_j=1^kdim V_j\&=sum_j=1^k#A_j\&=nendalignand therefore $bigoplus_j=1^kV_j=V$.






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        For each $jin1,2,ldots,k$, $dim V_j=n-(n-#A_j)=#A_j$. And it is not hard to prove that $ineq jimplies V_icap V_j=0$. So,beginaligndimleft(bigoplus_j=1^kV_jright)&=sum_j=1^kdim V_j\&=sum_j=1^k#A_j\&=nendalignand therefore $bigoplus_j=1^kV_j=V$.






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          For each $jin1,2,ldots,k$, $dim V_j=n-(n-#A_j)=#A_j$. And it is not hard to prove that $ineq jimplies V_icap V_j=0$. So,beginaligndimleft(bigoplus_j=1^kV_jright)&=sum_j=1^kdim V_j\&=sum_j=1^k#A_j\&=nendalignand therefore $bigoplus_j=1^kV_j=V$.






                          share|cite|improve this answer









                          $endgroup$



                          For each $jin1,2,ldots,k$, $dim V_j=n-(n-#A_j)=#A_j$. And it is not hard to prove that $ineq jimplies V_icap V_j=0$. So,beginaligndimleft(bigoplus_j=1^kV_jright)&=sum_j=1^kdim V_j\&=sum_j=1^k#A_j\&=nendalignand therefore $bigoplus_j=1^kV_j=V$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Apr 1 at 18:22









                          José Carlos SantosJosé Carlos Santos

                          176k24134243




                          176k24134243



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170938%2fpolynomials-vector-space-and-direct-sums%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                              Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                              Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu