Nash equilibrium in Cournot competition Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Cournot Nash Equilibrium Between Two FirmsCournot-Nash Equilibrium in DuopolyNash Equilibrium in Cournot DuopolyCournot Duopoly Game - Nash equilibriumCournot Oligopoly in Bayesian Game TheoryCournot competition: profit maximizer vs. market share maximizerGame Theory- Bertrand ProblemCournot Price Competition setupFinding the equilibrium production quantity of each firmSubgame perfect equilibrium question

Is a ledger board required if the side of my house is wood?

How can I reduce the gap between left and right of cdot with a macro?

What is this clumpy 20-30cm high yellow-flowered plant?

How were pictures turned from film to a big picture in a picture frame before digital scanning?

Why is it faster to reheat something than it is to cook it?

How would a mousetrap for use in space work?

Maximum summed subsequences with non-adjacent items

How come Sam didn't become Lord of Horn Hill?

Using audio cues to encourage good posture

Can anything be seen from the center of the Boötes void? How dark would it be?

How to install press fit bottom bracket into new frame

What are the diatonic extended chords of C major?

How to tell that you are a giant?

Why do we need to use the builder design pattern when we can do the same thing with setters?

Generate an RGB colour grid

How do living politicians protect their readily obtainable signatures from misuse?

Why is the AVR GCC compiler using a full `CALL` even though I have set the `-mshort-calls` flag?

How does the math work when buying airline miles?

Time to Settle Down!

Hangman Game with C++

Question about debouncing - delay of state change

Find 108 by using 3,4,6

What order were files/directories outputted in dir?

What initially awakened the Balrog?



Nash equilibrium in Cournot competition



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Cournot Nash Equilibrium Between Two FirmsCournot-Nash Equilibrium in DuopolyNash Equilibrium in Cournot DuopolyCournot Duopoly Game - Nash equilibriumCournot Oligopoly in Bayesian Game TheoryCournot competition: profit maximizer vs. market share maximizerGame Theory- Bertrand ProblemCournot Price Competition setupFinding the equilibrium production quantity of each firmSubgame perfect equilibrium question










3












$begingroup$


QUESTION:



Assume there are two types of products, labelled $l$ and $n$. Firms compete in the market by choosing which product to sell and then choosing the quantities. Let $Q_n$ and $Q_l$ denote the total demand of product $n$ and $l$, respectively. Let the inverse demand functions be given by:
beginalign*
& P_l(Q_l, Q_n) = (a+gamma) - Q_n - (1+delta)Q_l \
& P_n(Q_l, Q_n) = a - Q_n - Q_l
endalign*

where $P_l$ and $P_n$ denote the prices of product $l$ and $n$, respectively, and $a$, $gamma$, $delta$ are all constants greater than zero. Let $q_l^i$ and $q_n^i$ denote the $i$th firm's output of product $l$ and $n$, respectively. Let $X_l^i$ and $X_n^i$ denote the output of the other firms producing product $l$ and $n$, respectively. Let $N_n$ and $N_l$ denote the number of firms selling product $n$ and $l$, respectively. Let the marginal cost of producing the $l$ product be $c_n + c_p$ and the marginal cost of producing the $n$ product be $c_n$. Find all the sub-game perfect Nash equilibria in this game.



My working so far:



I have almost solved the question but I am stuck towards the end of my working. What I've done so far is as follows. First, fix the number of firms selling each product and solve for the equilibrium quantity choices. Then, we can solve for the equilibrium number of firms making each product.



A firm choosing to sell the $l$ product earns profits:
$$pi_l = (P_l - c_n - c_p)q_l^i cdots (1) $$
while a firm choosing to sell the $n$ product earns profits:
$$pi_n = (P_n - c_n )q_n^i cdots (2) $$
Noting that $Q_l = q_l^i + X_l^i$ and $Q_n = q_n^i + X_n^i$ and substituting into the above and then taking first-order conditions with respect to $q_l^i$ (for $(1)$) and $q_n^i$ (for $(2)$), respectively, yields:
beginalign*
& (a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p) - 2(1+delta)q_l^i = 0 cdots (1') \
& a - X_n^i - Q_l - c_n - 2q_n^i =0 cdots (2')
endalign*

From $(1')$, the best response function of a firm choosing to sell $q_l^i$ of product $l$ is given by
$$q_l^i = frac(a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p)2(1+delta) $$
but noting that $X_l^i = Q_l - q_l^i$, we have
$$q_l^i = frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+delta cdots (3) $$.
From $(2')$, the best response function of a firm choosing to sell $q_n^i$ of product $n$ is given by
$$q_n^i = fraca-X_n^i - Q_l - c_n2 $$
but noting that $X_n^i = Q_n - q_n^i$, we have
$$q_n^i = a-Q_n-Q_l-c_n cdots (4)$$.
Since the right-hand sides of $(3)$ and $(4)$ are constants, the first-order conditions imply that firms making the same product produce the same quantity in equilibrium. Since there are $N_n$ firms making $n$ and $N_l$ firms making $l$, therefore:
beginalign*
& Q_l = N_lq_l^i \
& Q_n = N_nq_n^i.
endalign*

Substituting in $(3)$ and $(4)$ we have the following:
beginalign*
& Q_l = N_lleft(frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+deltaright) cdots (5) \
& Q_n = N_nleft(a-Q_n-Q_l-c_nright) cdots (6)
endalign*

Solving $(5)$ and $(6)$ simultaneously for $Q_l$ and $Q_n$, we obtain the total sales of each product (with each firm selling a given product, selling the same amount):
beginalign*
& Q_l(N_l, N_n) = lambda N_lleft((N_n+1)(a + gamma - c_n - c_p) - N_n(a-c_n) right) cdots (7) \
& Q_n(N_l, N_n) = lambda N_nleft((1+delta)(N_l+1)(a-c_n) - N_l(a+gamma - c_n - c_p) right) cdots (8)
endalign*

where
$$lambda = frac1(1+delta)(N_l+1)(N_n+1) - N_lN_n $$. Therefore in equilibrium, the quantities chosen by firms selling $l$ and $n$ are, respectively:
beginalign*
& q_l(N_l, N_n) = fracQ_l(N_l, N_n)N_l \
& q_n(N_l, N_n) = fracQ_n(N_l, N_n)N_n
endalign*

To find the sub-game perfect Nash equilibrium, we need an additional property, that is, no firm can have an incentive to switch and produce the other product. The profits of firms producing $l$ and $n$, respectively, are given by
beginalign*
& pi_l^i(N_l, N_n) = left[a+gamma - Q_n(N_l, N_n) - (1+delta)Q_l(N_l, N_n) - c_n - c_p right]q_l(N_l, N_n) \
& pi_n^i(N_l, N_n) = left[a - Q_n(N_l, N_n) - Q_l(N_l, N_n) - c_n right]q_n(N_l, N_n).
endalign*

One can show that $pi_l^i(N_l, N_n)$ is decreasing in $N_l$ and $pi_n^i(N_l, N_n)$ is decreasing in $N_n$. Let $N = N_l + N_n$ denote the total firms in the market, then two types of equilibria can be summarized as follows:



  1. If $pi_l(1, N-1) < pi_n(0, N)$, each of the $N$ firms sells $q_n^* = Q_n(0,N)/N$ of product $n$ where $Q_n$ satisfies $(8)$ and no firms sell product $l$.

  2. If $pi_n(N-1, 1) < pi_l(N, 0)$, each of the $N$ firms sells $q_l^* = Q_l(N,0)/N$ of product $l$ where $Q_l$ satisfies $(7)$ and no firms sell product $n$.

The intuition behind equilibrium listed in 1. above is simple to see. If $pi_l(1, N-1) < pi_n(0, N)$, then we have
$$underbracepi_l(N,0) < cdots < pi_l(1, N-1)_textSince pi_l^i(N_l, N_n) textis decreasing in N_l < underbracepi_n(0, N) < cdots < pi_n(N-1, 1)_textSince pi_n^i(N_l, N_n) textis decreasing in N_n $$
Therefore, in equilibrium, any firm that is producing $l$ are strictly better off by deviating to producing $n$, so every firm will produce $n$ in equilibrium. The intuition for 2. is similar.



Where I am stuck:



I am told that there is another equilibrium which is characterized as:



If the number of firms in the market and the parameter values are such that the monopoly profits from selling one product exceed the Cournot profits if all firms sell the other product, then, ignoring integer problems, equilibrium is found by setting the profits from selling the two products equal and so $N_l^*$ and $N_n^*$ satisfy
$$
(1+delta)(N_l^* + 1)(a - c_n)^2left[(1+delta)(N_l^*+1)(N-N_l^* + 1) - (N-N_l^*)^2 right] = (N-N_l^* +1)(a+gamma - c_n - c_p)^2left[(1+delta)(N-N_l^*+1)(N_l^*+1) - (N_l^*)^2 right] cdots (9) $$

$$ N_n^* = N - N_l^* cdots (10) $$



If $pi_l(1, N-1) ge pi_n(0, N)$ and $pi_n(N-1, 1) ge pi_l(N, 0)$, then $N_l^*$ firms sell $q_l^* = Q_l(N_l^*, N_n^*)/N_l^*$ of $l$; $N_n^*$ sell $q_n^* = Q_n(N_l^*, N_n^*)/N_n^*$ of $n$ when equations (7), (8), (9), and (10) are satisfied.



What is the reasoning behind this equilibrium? Specifically, how do Equations (9) and (10) come about? And what exactly are $N_n^*$ and $N_l^*$ and how do they come about in the construction of the equilibrium?










share|cite|improve this question











$endgroup$
















    3












    $begingroup$


    QUESTION:



    Assume there are two types of products, labelled $l$ and $n$. Firms compete in the market by choosing which product to sell and then choosing the quantities. Let $Q_n$ and $Q_l$ denote the total demand of product $n$ and $l$, respectively. Let the inverse demand functions be given by:
    beginalign*
    & P_l(Q_l, Q_n) = (a+gamma) - Q_n - (1+delta)Q_l \
    & P_n(Q_l, Q_n) = a - Q_n - Q_l
    endalign*

    where $P_l$ and $P_n$ denote the prices of product $l$ and $n$, respectively, and $a$, $gamma$, $delta$ are all constants greater than zero. Let $q_l^i$ and $q_n^i$ denote the $i$th firm's output of product $l$ and $n$, respectively. Let $X_l^i$ and $X_n^i$ denote the output of the other firms producing product $l$ and $n$, respectively. Let $N_n$ and $N_l$ denote the number of firms selling product $n$ and $l$, respectively. Let the marginal cost of producing the $l$ product be $c_n + c_p$ and the marginal cost of producing the $n$ product be $c_n$. Find all the sub-game perfect Nash equilibria in this game.



    My working so far:



    I have almost solved the question but I am stuck towards the end of my working. What I've done so far is as follows. First, fix the number of firms selling each product and solve for the equilibrium quantity choices. Then, we can solve for the equilibrium number of firms making each product.



    A firm choosing to sell the $l$ product earns profits:
    $$pi_l = (P_l - c_n - c_p)q_l^i cdots (1) $$
    while a firm choosing to sell the $n$ product earns profits:
    $$pi_n = (P_n - c_n )q_n^i cdots (2) $$
    Noting that $Q_l = q_l^i + X_l^i$ and $Q_n = q_n^i + X_n^i$ and substituting into the above and then taking first-order conditions with respect to $q_l^i$ (for $(1)$) and $q_n^i$ (for $(2)$), respectively, yields:
    beginalign*
    & (a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p) - 2(1+delta)q_l^i = 0 cdots (1') \
    & a - X_n^i - Q_l - c_n - 2q_n^i =0 cdots (2')
    endalign*

    From $(1')$, the best response function of a firm choosing to sell $q_l^i$ of product $l$ is given by
    $$q_l^i = frac(a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p)2(1+delta) $$
    but noting that $X_l^i = Q_l - q_l^i$, we have
    $$q_l^i = frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+delta cdots (3) $$.
    From $(2')$, the best response function of a firm choosing to sell $q_n^i$ of product $n$ is given by
    $$q_n^i = fraca-X_n^i - Q_l - c_n2 $$
    but noting that $X_n^i = Q_n - q_n^i$, we have
    $$q_n^i = a-Q_n-Q_l-c_n cdots (4)$$.
    Since the right-hand sides of $(3)$ and $(4)$ are constants, the first-order conditions imply that firms making the same product produce the same quantity in equilibrium. Since there are $N_n$ firms making $n$ and $N_l$ firms making $l$, therefore:
    beginalign*
    & Q_l = N_lq_l^i \
    & Q_n = N_nq_n^i.
    endalign*

    Substituting in $(3)$ and $(4)$ we have the following:
    beginalign*
    & Q_l = N_lleft(frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+deltaright) cdots (5) \
    & Q_n = N_nleft(a-Q_n-Q_l-c_nright) cdots (6)
    endalign*

    Solving $(5)$ and $(6)$ simultaneously for $Q_l$ and $Q_n$, we obtain the total sales of each product (with each firm selling a given product, selling the same amount):
    beginalign*
    & Q_l(N_l, N_n) = lambda N_lleft((N_n+1)(a + gamma - c_n - c_p) - N_n(a-c_n) right) cdots (7) \
    & Q_n(N_l, N_n) = lambda N_nleft((1+delta)(N_l+1)(a-c_n) - N_l(a+gamma - c_n - c_p) right) cdots (8)
    endalign*

    where
    $$lambda = frac1(1+delta)(N_l+1)(N_n+1) - N_lN_n $$. Therefore in equilibrium, the quantities chosen by firms selling $l$ and $n$ are, respectively:
    beginalign*
    & q_l(N_l, N_n) = fracQ_l(N_l, N_n)N_l \
    & q_n(N_l, N_n) = fracQ_n(N_l, N_n)N_n
    endalign*

    To find the sub-game perfect Nash equilibrium, we need an additional property, that is, no firm can have an incentive to switch and produce the other product. The profits of firms producing $l$ and $n$, respectively, are given by
    beginalign*
    & pi_l^i(N_l, N_n) = left[a+gamma - Q_n(N_l, N_n) - (1+delta)Q_l(N_l, N_n) - c_n - c_p right]q_l(N_l, N_n) \
    & pi_n^i(N_l, N_n) = left[a - Q_n(N_l, N_n) - Q_l(N_l, N_n) - c_n right]q_n(N_l, N_n).
    endalign*

    One can show that $pi_l^i(N_l, N_n)$ is decreasing in $N_l$ and $pi_n^i(N_l, N_n)$ is decreasing in $N_n$. Let $N = N_l + N_n$ denote the total firms in the market, then two types of equilibria can be summarized as follows:



    1. If $pi_l(1, N-1) < pi_n(0, N)$, each of the $N$ firms sells $q_n^* = Q_n(0,N)/N$ of product $n$ where $Q_n$ satisfies $(8)$ and no firms sell product $l$.

    2. If $pi_n(N-1, 1) < pi_l(N, 0)$, each of the $N$ firms sells $q_l^* = Q_l(N,0)/N$ of product $l$ where $Q_l$ satisfies $(7)$ and no firms sell product $n$.

    The intuition behind equilibrium listed in 1. above is simple to see. If $pi_l(1, N-1) < pi_n(0, N)$, then we have
    $$underbracepi_l(N,0) < cdots < pi_l(1, N-1)_textSince pi_l^i(N_l, N_n) textis decreasing in N_l < underbracepi_n(0, N) < cdots < pi_n(N-1, 1)_textSince pi_n^i(N_l, N_n) textis decreasing in N_n $$
    Therefore, in equilibrium, any firm that is producing $l$ are strictly better off by deviating to producing $n$, so every firm will produce $n$ in equilibrium. The intuition for 2. is similar.



    Where I am stuck:



    I am told that there is another equilibrium which is characterized as:



    If the number of firms in the market and the parameter values are such that the monopoly profits from selling one product exceed the Cournot profits if all firms sell the other product, then, ignoring integer problems, equilibrium is found by setting the profits from selling the two products equal and so $N_l^*$ and $N_n^*$ satisfy
    $$
    (1+delta)(N_l^* + 1)(a - c_n)^2left[(1+delta)(N_l^*+1)(N-N_l^* + 1) - (N-N_l^*)^2 right] = (N-N_l^* +1)(a+gamma - c_n - c_p)^2left[(1+delta)(N-N_l^*+1)(N_l^*+1) - (N_l^*)^2 right] cdots (9) $$

    $$ N_n^* = N - N_l^* cdots (10) $$



    If $pi_l(1, N-1) ge pi_n(0, N)$ and $pi_n(N-1, 1) ge pi_l(N, 0)$, then $N_l^*$ firms sell $q_l^* = Q_l(N_l^*, N_n^*)/N_l^*$ of $l$; $N_n^*$ sell $q_n^* = Q_n(N_l^*, N_n^*)/N_n^*$ of $n$ when equations (7), (8), (9), and (10) are satisfied.



    What is the reasoning behind this equilibrium? Specifically, how do Equations (9) and (10) come about? And what exactly are $N_n^*$ and $N_l^*$ and how do they come about in the construction of the equilibrium?










    share|cite|improve this question











    $endgroup$














      3












      3








      3


      2



      $begingroup$


      QUESTION:



      Assume there are two types of products, labelled $l$ and $n$. Firms compete in the market by choosing which product to sell and then choosing the quantities. Let $Q_n$ and $Q_l$ denote the total demand of product $n$ and $l$, respectively. Let the inverse demand functions be given by:
      beginalign*
      & P_l(Q_l, Q_n) = (a+gamma) - Q_n - (1+delta)Q_l \
      & P_n(Q_l, Q_n) = a - Q_n - Q_l
      endalign*

      where $P_l$ and $P_n$ denote the prices of product $l$ and $n$, respectively, and $a$, $gamma$, $delta$ are all constants greater than zero. Let $q_l^i$ and $q_n^i$ denote the $i$th firm's output of product $l$ and $n$, respectively. Let $X_l^i$ and $X_n^i$ denote the output of the other firms producing product $l$ and $n$, respectively. Let $N_n$ and $N_l$ denote the number of firms selling product $n$ and $l$, respectively. Let the marginal cost of producing the $l$ product be $c_n + c_p$ and the marginal cost of producing the $n$ product be $c_n$. Find all the sub-game perfect Nash equilibria in this game.



      My working so far:



      I have almost solved the question but I am stuck towards the end of my working. What I've done so far is as follows. First, fix the number of firms selling each product and solve for the equilibrium quantity choices. Then, we can solve for the equilibrium number of firms making each product.



      A firm choosing to sell the $l$ product earns profits:
      $$pi_l = (P_l - c_n - c_p)q_l^i cdots (1) $$
      while a firm choosing to sell the $n$ product earns profits:
      $$pi_n = (P_n - c_n )q_n^i cdots (2) $$
      Noting that $Q_l = q_l^i + X_l^i$ and $Q_n = q_n^i + X_n^i$ and substituting into the above and then taking first-order conditions with respect to $q_l^i$ (for $(1)$) and $q_n^i$ (for $(2)$), respectively, yields:
      beginalign*
      & (a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p) - 2(1+delta)q_l^i = 0 cdots (1') \
      & a - X_n^i - Q_l - c_n - 2q_n^i =0 cdots (2')
      endalign*

      From $(1')$, the best response function of a firm choosing to sell $q_l^i$ of product $l$ is given by
      $$q_l^i = frac(a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p)2(1+delta) $$
      but noting that $X_l^i = Q_l - q_l^i$, we have
      $$q_l^i = frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+delta cdots (3) $$.
      From $(2')$, the best response function of a firm choosing to sell $q_n^i$ of product $n$ is given by
      $$q_n^i = fraca-X_n^i - Q_l - c_n2 $$
      but noting that $X_n^i = Q_n - q_n^i$, we have
      $$q_n^i = a-Q_n-Q_l-c_n cdots (4)$$.
      Since the right-hand sides of $(3)$ and $(4)$ are constants, the first-order conditions imply that firms making the same product produce the same quantity in equilibrium. Since there are $N_n$ firms making $n$ and $N_l$ firms making $l$, therefore:
      beginalign*
      & Q_l = N_lq_l^i \
      & Q_n = N_nq_n^i.
      endalign*

      Substituting in $(3)$ and $(4)$ we have the following:
      beginalign*
      & Q_l = N_lleft(frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+deltaright) cdots (5) \
      & Q_n = N_nleft(a-Q_n-Q_l-c_nright) cdots (6)
      endalign*

      Solving $(5)$ and $(6)$ simultaneously for $Q_l$ and $Q_n$, we obtain the total sales of each product (with each firm selling a given product, selling the same amount):
      beginalign*
      & Q_l(N_l, N_n) = lambda N_lleft((N_n+1)(a + gamma - c_n - c_p) - N_n(a-c_n) right) cdots (7) \
      & Q_n(N_l, N_n) = lambda N_nleft((1+delta)(N_l+1)(a-c_n) - N_l(a+gamma - c_n - c_p) right) cdots (8)
      endalign*

      where
      $$lambda = frac1(1+delta)(N_l+1)(N_n+1) - N_lN_n $$. Therefore in equilibrium, the quantities chosen by firms selling $l$ and $n$ are, respectively:
      beginalign*
      & q_l(N_l, N_n) = fracQ_l(N_l, N_n)N_l \
      & q_n(N_l, N_n) = fracQ_n(N_l, N_n)N_n
      endalign*

      To find the sub-game perfect Nash equilibrium, we need an additional property, that is, no firm can have an incentive to switch and produce the other product. The profits of firms producing $l$ and $n$, respectively, are given by
      beginalign*
      & pi_l^i(N_l, N_n) = left[a+gamma - Q_n(N_l, N_n) - (1+delta)Q_l(N_l, N_n) - c_n - c_p right]q_l(N_l, N_n) \
      & pi_n^i(N_l, N_n) = left[a - Q_n(N_l, N_n) - Q_l(N_l, N_n) - c_n right]q_n(N_l, N_n).
      endalign*

      One can show that $pi_l^i(N_l, N_n)$ is decreasing in $N_l$ and $pi_n^i(N_l, N_n)$ is decreasing in $N_n$. Let $N = N_l + N_n$ denote the total firms in the market, then two types of equilibria can be summarized as follows:



      1. If $pi_l(1, N-1) < pi_n(0, N)$, each of the $N$ firms sells $q_n^* = Q_n(0,N)/N$ of product $n$ where $Q_n$ satisfies $(8)$ and no firms sell product $l$.

      2. If $pi_n(N-1, 1) < pi_l(N, 0)$, each of the $N$ firms sells $q_l^* = Q_l(N,0)/N$ of product $l$ where $Q_l$ satisfies $(7)$ and no firms sell product $n$.

      The intuition behind equilibrium listed in 1. above is simple to see. If $pi_l(1, N-1) < pi_n(0, N)$, then we have
      $$underbracepi_l(N,0) < cdots < pi_l(1, N-1)_textSince pi_l^i(N_l, N_n) textis decreasing in N_l < underbracepi_n(0, N) < cdots < pi_n(N-1, 1)_textSince pi_n^i(N_l, N_n) textis decreasing in N_n $$
      Therefore, in equilibrium, any firm that is producing $l$ are strictly better off by deviating to producing $n$, so every firm will produce $n$ in equilibrium. The intuition for 2. is similar.



      Where I am stuck:



      I am told that there is another equilibrium which is characterized as:



      If the number of firms in the market and the parameter values are such that the monopoly profits from selling one product exceed the Cournot profits if all firms sell the other product, then, ignoring integer problems, equilibrium is found by setting the profits from selling the two products equal and so $N_l^*$ and $N_n^*$ satisfy
      $$
      (1+delta)(N_l^* + 1)(a - c_n)^2left[(1+delta)(N_l^*+1)(N-N_l^* + 1) - (N-N_l^*)^2 right] = (N-N_l^* +1)(a+gamma - c_n - c_p)^2left[(1+delta)(N-N_l^*+1)(N_l^*+1) - (N_l^*)^2 right] cdots (9) $$

      $$ N_n^* = N - N_l^* cdots (10) $$



      If $pi_l(1, N-1) ge pi_n(0, N)$ and $pi_n(N-1, 1) ge pi_l(N, 0)$, then $N_l^*$ firms sell $q_l^* = Q_l(N_l^*, N_n^*)/N_l^*$ of $l$; $N_n^*$ sell $q_n^* = Q_n(N_l^*, N_n^*)/N_n^*$ of $n$ when equations (7), (8), (9), and (10) are satisfied.



      What is the reasoning behind this equilibrium? Specifically, how do Equations (9) and (10) come about? And what exactly are $N_n^*$ and $N_l^*$ and how do they come about in the construction of the equilibrium?










      share|cite|improve this question











      $endgroup$




      QUESTION:



      Assume there are two types of products, labelled $l$ and $n$. Firms compete in the market by choosing which product to sell and then choosing the quantities. Let $Q_n$ and $Q_l$ denote the total demand of product $n$ and $l$, respectively. Let the inverse demand functions be given by:
      beginalign*
      & P_l(Q_l, Q_n) = (a+gamma) - Q_n - (1+delta)Q_l \
      & P_n(Q_l, Q_n) = a - Q_n - Q_l
      endalign*

      where $P_l$ and $P_n$ denote the prices of product $l$ and $n$, respectively, and $a$, $gamma$, $delta$ are all constants greater than zero. Let $q_l^i$ and $q_n^i$ denote the $i$th firm's output of product $l$ and $n$, respectively. Let $X_l^i$ and $X_n^i$ denote the output of the other firms producing product $l$ and $n$, respectively. Let $N_n$ and $N_l$ denote the number of firms selling product $n$ and $l$, respectively. Let the marginal cost of producing the $l$ product be $c_n + c_p$ and the marginal cost of producing the $n$ product be $c_n$. Find all the sub-game perfect Nash equilibria in this game.



      My working so far:



      I have almost solved the question but I am stuck towards the end of my working. What I've done so far is as follows. First, fix the number of firms selling each product and solve for the equilibrium quantity choices. Then, we can solve for the equilibrium number of firms making each product.



      A firm choosing to sell the $l$ product earns profits:
      $$pi_l = (P_l - c_n - c_p)q_l^i cdots (1) $$
      while a firm choosing to sell the $n$ product earns profits:
      $$pi_n = (P_n - c_n )q_n^i cdots (2) $$
      Noting that $Q_l = q_l^i + X_l^i$ and $Q_n = q_n^i + X_n^i$ and substituting into the above and then taking first-order conditions with respect to $q_l^i$ (for $(1)$) and $q_n^i$ (for $(2)$), respectively, yields:
      beginalign*
      & (a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p) - 2(1+delta)q_l^i = 0 cdots (1') \
      & a - X_n^i - Q_l - c_n - 2q_n^i =0 cdots (2')
      endalign*

      From $(1')$, the best response function of a firm choosing to sell $q_l^i$ of product $l$ is given by
      $$q_l^i = frac(a+gamma) - (1+delta)X_l^i - Q_n - (c_n + c_p)2(1+delta) $$
      but noting that $X_l^i = Q_l - q_l^i$, we have
      $$q_l^i = frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+delta cdots (3) $$.
      From $(2')$, the best response function of a firm choosing to sell $q_n^i$ of product $n$ is given by
      $$q_n^i = fraca-X_n^i - Q_l - c_n2 $$
      but noting that $X_n^i = Q_n - q_n^i$, we have
      $$q_n^i = a-Q_n-Q_l-c_n cdots (4)$$.
      Since the right-hand sides of $(3)$ and $(4)$ are constants, the first-order conditions imply that firms making the same product produce the same quantity in equilibrium. Since there are $N_n$ firms making $n$ and $N_l$ firms making $l$, therefore:
      beginalign*
      & Q_l = N_lq_l^i \
      & Q_n = N_nq_n^i.
      endalign*

      Substituting in $(3)$ and $(4)$ we have the following:
      beginalign*
      & Q_l = N_lleft(frac(a+gamma) - (1+delta)Q_l - Q_n - (c_n + c_p)1+deltaright) cdots (5) \
      & Q_n = N_nleft(a-Q_n-Q_l-c_nright) cdots (6)
      endalign*

      Solving $(5)$ and $(6)$ simultaneously for $Q_l$ and $Q_n$, we obtain the total sales of each product (with each firm selling a given product, selling the same amount):
      beginalign*
      & Q_l(N_l, N_n) = lambda N_lleft((N_n+1)(a + gamma - c_n - c_p) - N_n(a-c_n) right) cdots (7) \
      & Q_n(N_l, N_n) = lambda N_nleft((1+delta)(N_l+1)(a-c_n) - N_l(a+gamma - c_n - c_p) right) cdots (8)
      endalign*

      where
      $$lambda = frac1(1+delta)(N_l+1)(N_n+1) - N_lN_n $$. Therefore in equilibrium, the quantities chosen by firms selling $l$ and $n$ are, respectively:
      beginalign*
      & q_l(N_l, N_n) = fracQ_l(N_l, N_n)N_l \
      & q_n(N_l, N_n) = fracQ_n(N_l, N_n)N_n
      endalign*

      To find the sub-game perfect Nash equilibrium, we need an additional property, that is, no firm can have an incentive to switch and produce the other product. The profits of firms producing $l$ and $n$, respectively, are given by
      beginalign*
      & pi_l^i(N_l, N_n) = left[a+gamma - Q_n(N_l, N_n) - (1+delta)Q_l(N_l, N_n) - c_n - c_p right]q_l(N_l, N_n) \
      & pi_n^i(N_l, N_n) = left[a - Q_n(N_l, N_n) - Q_l(N_l, N_n) - c_n right]q_n(N_l, N_n).
      endalign*

      One can show that $pi_l^i(N_l, N_n)$ is decreasing in $N_l$ and $pi_n^i(N_l, N_n)$ is decreasing in $N_n$. Let $N = N_l + N_n$ denote the total firms in the market, then two types of equilibria can be summarized as follows:



      1. If $pi_l(1, N-1) < pi_n(0, N)$, each of the $N$ firms sells $q_n^* = Q_n(0,N)/N$ of product $n$ where $Q_n$ satisfies $(8)$ and no firms sell product $l$.

      2. If $pi_n(N-1, 1) < pi_l(N, 0)$, each of the $N$ firms sells $q_l^* = Q_l(N,0)/N$ of product $l$ where $Q_l$ satisfies $(7)$ and no firms sell product $n$.

      The intuition behind equilibrium listed in 1. above is simple to see. If $pi_l(1, N-1) < pi_n(0, N)$, then we have
      $$underbracepi_l(N,0) < cdots < pi_l(1, N-1)_textSince pi_l^i(N_l, N_n) textis decreasing in N_l < underbracepi_n(0, N) < cdots < pi_n(N-1, 1)_textSince pi_n^i(N_l, N_n) textis decreasing in N_n $$
      Therefore, in equilibrium, any firm that is producing $l$ are strictly better off by deviating to producing $n$, so every firm will produce $n$ in equilibrium. The intuition for 2. is similar.



      Where I am stuck:



      I am told that there is another equilibrium which is characterized as:



      If the number of firms in the market and the parameter values are such that the monopoly profits from selling one product exceed the Cournot profits if all firms sell the other product, then, ignoring integer problems, equilibrium is found by setting the profits from selling the two products equal and so $N_l^*$ and $N_n^*$ satisfy
      $$
      (1+delta)(N_l^* + 1)(a - c_n)^2left[(1+delta)(N_l^*+1)(N-N_l^* + 1) - (N-N_l^*)^2 right] = (N-N_l^* +1)(a+gamma - c_n - c_p)^2left[(1+delta)(N-N_l^*+1)(N_l^*+1) - (N_l^*)^2 right] cdots (9) $$

      $$ N_n^* = N - N_l^* cdots (10) $$



      If $pi_l(1, N-1) ge pi_n(0, N)$ and $pi_n(N-1, 1) ge pi_l(N, 0)$, then $N_l^*$ firms sell $q_l^* = Q_l(N_l^*, N_n^*)/N_l^*$ of $l$; $N_n^*$ sell $q_n^* = Q_n(N_l^*, N_n^*)/N_n^*$ of $n$ when equations (7), (8), (9), and (10) are satisfied.



      What is the reasoning behind this equilibrium? Specifically, how do Equations (9) and (10) come about? And what exactly are $N_n^*$ and $N_l^*$ and how do they come about in the construction of the equilibrium?







      game-theory economics nash-equilibrium






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 2 at 21:18







      elbarto

















      asked Apr 1 at 19:16









      elbartoelbarto

      1,574830




      1,574830




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171044%2fnash-equilibrium-in-cournot-competition%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171044%2fnash-equilibrium-in-cournot-competition%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu