$fracd^2ydx^2=f(x)$ with boundary conditions, how to find integration bounds Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Differential Equations - EigenfunctionsCan't match boundary conditions on a perturbation series solution to a non-linear ODE?Mysterious inconsistency in an inhomogeneous linear 2nd order ODE with specified boundary valuesLaplace Equation with non-const Dirichlet Boundary ConditionsPoisson partial differential equation under Neumann boundary conditionsquaestion to solution of the Laplace's Equation $u_tt+u_xx=0$ using method of separation of variablesWeak form of steady Navier-Stokes equations with special boundary conditionUsing Green's function to solve $y''=1$ with $y(0)=y(1)=0$Difficulty in working out trivial solutionMatrix representation of a finite difference with Neumann boundary conditions

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode

Do any jurisdictions seriously consider reclassifying social media websites as publishers?

Why is Nikon 1.4g better when Nikon 1.8g is sharper?

Take 2! Is this homebrew Lady of Pain warlock patron balanced?

How much damage would a cupful of neutron star matter do to the Earth?

When a candle burns, why does the top of wick glow if bottom of flame is hottest?

How does the math work when buying airline miles?

What is the appropriate index architecture when forced to implement IsDeleted (soft deletes)?

What is the font for "b" letter?

What do you call the main part of a joke?

How to compare two different files line by line in unix?

Can a new player join a group only when a new campaign starts?

What is a fractional matching?

Time to Settle Down!

Is CEO the "profession" with the most psychopaths?

How can I reduce the gap between left and right of cdot with a macro?

Question about debouncing - delay of state change

As a beginner, should I get a Squier Strat with a SSS config or a HSS?

Project Euler #1 in C++

Why is my ESD wriststrap failing with nitrile gloves on?

Putting class ranking in CV, but against dept guidelines

Why aren't air breathing engines used as small first stages?

A term for a woman complaining about things/begging in a cute/childish way

Why wasn't DOSKEY integrated with COMMAND.COM?



$fracd^2ydx^2=f(x)$ with boundary conditions, how to find integration bounds



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Differential Equations - EigenfunctionsCan't match boundary conditions on a perturbation series solution to a non-linear ODE?Mysterious inconsistency in an inhomogeneous linear 2nd order ODE with specified boundary valuesLaplace Equation with non-const Dirichlet Boundary ConditionsPoisson partial differential equation under Neumann boundary conditionsquaestion to solution of the Laplace's Equation $u_tt+u_xx=0$ using method of separation of variablesWeak form of steady Navier-Stokes equations with special boundary conditionUsing Green's function to solve $y''=1$ with $y(0)=y(1)=0$Difficulty in working out trivial solutionMatrix representation of a finite difference with Neumann boundary conditions










1












$begingroup$


Given $$fracd^2ydx^2=f(x),quad y(-1)=y(1)=0,$$ I used $u=y'$ and $u(x_0)=u_0$ to get
$$
u(x)=u_0+int_x_0^xf(xi)dxi.
$$



Then we have $y'=u$, which we can integrate again using $y(x_0)=y_0$ to get



$$
y(x)=y_0+int_x_0^xBig(u_0+int_x_0^zeta f(xi)dxiBig)dzeta=(y_0-u_0x_0)+u_0x+int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta.
$$



Now my question is, what do I do with $y_0,x_0$ and $u_0$ to get it into the normal form using $C_1,C_2$? Wolfram Alpha gives the following expression:



$$
y(x)=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta,
$$



but how did they set $x_0=1$? Because we didn't use any boundary conditions yet. I understand $C_1$ and $C_2$ as just relabeling.










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    Given $$fracd^2ydx^2=f(x),quad y(-1)=y(1)=0,$$ I used $u=y'$ and $u(x_0)=u_0$ to get
    $$
    u(x)=u_0+int_x_0^xf(xi)dxi.
    $$



    Then we have $y'=u$, which we can integrate again using $y(x_0)=y_0$ to get



    $$
    y(x)=y_0+int_x_0^xBig(u_0+int_x_0^zeta f(xi)dxiBig)dzeta=(y_0-u_0x_0)+u_0x+int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta.
    $$



    Now my question is, what do I do with $y_0,x_0$ and $u_0$ to get it into the normal form using $C_1,C_2$? Wolfram Alpha gives the following expression:



    $$
    y(x)=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta,
    $$



    but how did they set $x_0=1$? Because we didn't use any boundary conditions yet. I understand $C_1$ and $C_2$ as just relabeling.










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      Given $$fracd^2ydx^2=f(x),quad y(-1)=y(1)=0,$$ I used $u=y'$ and $u(x_0)=u_0$ to get
      $$
      u(x)=u_0+int_x_0^xf(xi)dxi.
      $$



      Then we have $y'=u$, which we can integrate again using $y(x_0)=y_0$ to get



      $$
      y(x)=y_0+int_x_0^xBig(u_0+int_x_0^zeta f(xi)dxiBig)dzeta=(y_0-u_0x_0)+u_0x+int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta.
      $$



      Now my question is, what do I do with $y_0,x_0$ and $u_0$ to get it into the normal form using $C_1,C_2$? Wolfram Alpha gives the following expression:



      $$
      y(x)=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta,
      $$



      but how did they set $x_0=1$? Because we didn't use any boundary conditions yet. I understand $C_1$ and $C_2$ as just relabeling.










      share|cite|improve this question









      $endgroup$




      Given $$fracd^2ydx^2=f(x),quad y(-1)=y(1)=0,$$ I used $u=y'$ and $u(x_0)=u_0$ to get
      $$
      u(x)=u_0+int_x_0^xf(xi)dxi.
      $$



      Then we have $y'=u$, which we can integrate again using $y(x_0)=y_0$ to get



      $$
      y(x)=y_0+int_x_0^xBig(u_0+int_x_0^zeta f(xi)dxiBig)dzeta=(y_0-u_0x_0)+u_0x+int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta.
      $$



      Now my question is, what do I do with $y_0,x_0$ and $u_0$ to get it into the normal form using $C_1,C_2$? Wolfram Alpha gives the following expression:



      $$
      y(x)=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta,
      $$



      but how did they set $x_0=1$? Because we didn't use any boundary conditions yet. I understand $C_1$ and $C_2$ as just relabeling.







      ordinary-differential-equations boundary-value-problem upper-lower-bounds






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 1 at 18:12









      The Coding WombatThe Coding Wombat

      342111




      342111




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          This is because
          $$int_x_0^x f(t) dt=int_1^x f(t) dt - int_1^x_0 f(t) dt=int_1^x f(t) dt - k$$
          For some $kinmathbbR$. Hence
          $$int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta=int_x_0^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta$$
          $$=int_1^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-int_1^xk_1dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-k_1(x-1)-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          So
          $$y(x)=y_0-u_0x_0+u_0x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          $$=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:25










          • $begingroup$
            Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:27










          • $begingroup$
            So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:33






          • 1




            $begingroup$
            Is that enough of an explanation for you now?
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:44











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170941%2ffracd2ydx2-fx-with-boundary-conditions-how-to-find-integration-bound%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          This is because
          $$int_x_0^x f(t) dt=int_1^x f(t) dt - int_1^x_0 f(t) dt=int_1^x f(t) dt - k$$
          For some $kinmathbbR$. Hence
          $$int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta=int_x_0^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta$$
          $$=int_1^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-int_1^xk_1dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-k_1(x-1)-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          So
          $$y(x)=y_0-u_0x_0+u_0x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          $$=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:25










          • $begingroup$
            Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:27










          • $begingroup$
            So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:33






          • 1




            $begingroup$
            Is that enough of an explanation for you now?
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:44















          2












          $begingroup$

          This is because
          $$int_x_0^x f(t) dt=int_1^x f(t) dt - int_1^x_0 f(t) dt=int_1^x f(t) dt - k$$
          For some $kinmathbbR$. Hence
          $$int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta=int_x_0^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta$$
          $$=int_1^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-int_1^xk_1dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-k_1(x-1)-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          So
          $$y(x)=y_0-u_0x_0+u_0x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          $$=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta$$






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:25










          • $begingroup$
            Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:27










          • $begingroup$
            So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:33






          • 1




            $begingroup$
            Is that enough of an explanation for you now?
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:44













          2












          2








          2





          $begingroup$

          This is because
          $$int_x_0^x f(t) dt=int_1^x f(t) dt - int_1^x_0 f(t) dt=int_1^x f(t) dt - k$$
          For some $kinmathbbR$. Hence
          $$int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta=int_x_0^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta$$
          $$=int_1^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-int_1^xk_1dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-k_1(x-1)-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          So
          $$y(x)=y_0-u_0x_0+u_0x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          $$=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta$$






          share|cite|improve this answer











          $endgroup$



          This is because
          $$int_x_0^x f(t) dt=int_1^x f(t) dt - int_1^x_0 f(t) dt=int_1^x f(t) dt - k$$
          For some $kinmathbbR$. Hence
          $$int_x_0^xBig(int_x_0^zeta f(xi)dxiBig)dzeta=int_x_0^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta$$
          $$=int_1^xBig(int_1^zeta f(xi)dxi-k_1Big)dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-int_1^xk_1dzeta-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta-k_1(x-1)-k_2$$
          $$=int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          So
          $$y(x)=y_0-u_0x_0+u_0x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta+k_3x+k_4$$
          $$=C_1+C_2x+int_1^xBig(int_1^zeta f(xi)dxiBig)dzeta$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 1 at 18:44

























          answered Apr 1 at 18:24









          Peter ForemanPeter Foreman

          8,1421321




          8,1421321











          • $begingroup$
            But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:25










          • $begingroup$
            Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:27










          • $begingroup$
            So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:33






          • 1




            $begingroup$
            Is that enough of an explanation for you now?
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:44
















          • $begingroup$
            But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:25










          • $begingroup$
            Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:27










          • $begingroup$
            So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
            $endgroup$
            – The Coding Wombat
            Apr 1 at 18:33






          • 1




            $begingroup$
            Is that enough of an explanation for you now?
            $endgroup$
            – Peter Foreman
            Apr 1 at 18:44















          $begingroup$
          But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
          $endgroup$
          – The Coding Wombat
          Apr 1 at 18:25




          $begingroup$
          But the expression I found has integration bounds from $x_0$ to $x$, so that isn't a constant right?
          $endgroup$
          – The Coding Wombat
          Apr 1 at 18:25












          $begingroup$
          Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
          $endgroup$
          – Peter Foreman
          Apr 1 at 18:27




          $begingroup$
          Yes the upper bound is variable, but as long as one of the bounds is constant, it can take any chosen value because the change in value only effects the result by a constant amount. This amount can be corrected by subtracting some constant which is written as part of $C_1$
          $endgroup$
          – Peter Foreman
          Apr 1 at 18:27












          $begingroup$
          So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
          $endgroup$
          – The Coding Wombat
          Apr 1 at 18:33




          $begingroup$
          So we can set $x_0=1$ because we just subtract another integral with some other bound to correct for this? How did you get the integral in your answer?
          $endgroup$
          – The Coding Wombat
          Apr 1 at 18:33




          1




          1




          $begingroup$
          Is that enough of an explanation for you now?
          $endgroup$
          – Peter Foreman
          Apr 1 at 18:44




          $begingroup$
          Is that enough of an explanation for you now?
          $endgroup$
          – Peter Foreman
          Apr 1 at 18:44

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170941%2ffracd2ydx2-fx-with-boundary-conditions-how-to-find-integration-bound%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu