Prove that if $p$ is prime and $a^7-b^3=p^2$ then $textgcd(a,b)=1$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)How can I prove that $gcd(a,b)=1implies gcd(a^2,b^2)=1$ without using prime decomposition?Show that $gcd(a,bc)=1$ if and only if $gcd(a,b)=1$ and $gcd(a,c)=1$Prove that if $gcd(a,b)=1$ then $gcd(ab,c) = gcd(a,c) gcd(b,c)$If $gcd(a,n)=gcd(b,n)=1$, then show that $gcd(ab pmod n, n)=1$prove that $operatornamelcm(n,m) = nm/gcd(n,m)$If $gcd (b,c)=1$, then for all $ain mathbb Z$, $gcd(gcd(a,b),gcd (a,c))=1$.Let $p$ be a prime. Suppose that $gcd(a, b) = p$. Find $gcd(a^2,b)$ for all integers $a$ and $b$.$mathoptextlcm[n,100] = gcd(n,100)+450~?$Prove that for all integers $r, s$ and $t$, that $gcd(gcd(r, s), t) = gcd(r, gcd(s, t))$.Prove that for any integers a and b and c, gcd(a, b) = gcd(a + bc, a + b(c − 1))

Putting class ranking in CV, but against dept guidelines

Why should I vote and accept answers?

Is there hard evidence that the grant peer review system performs significantly better than random?

How to tell that you are a giant?

Is CEO the "profession" with the most psychopaths?

How could we fake a moon landing now?

What is a fractional matching?

What initially awakened the Balrog?

Performance gap between vector<bool> and array

A term for a woman complaining about things/begging in a cute/childish way

What would you call this weird metallic apparatus that allows you to lift people?

Sum letters are not two different

Is grep documentation about ignoring case wrong, since it doesn't ignore case in filenames?

How does the secondary effect of the Heat Metal spell interact with a creature resistant/immune to fire damage?

What do you call the main part of a joke?

ArcGIS Pro Python arcpy.CreatePersonalGDB_management

How often does castling occur in grandmaster games?

Can anything be seen from the center of the Boötes void? How dark would it be?

SF book about people trapped in a series of worlds they imagine

Significance of Cersei's obsession with elephants?

Selecting user stories during sprint planning

How does light 'choose' between wave and particle behaviour?

If Windows 7 doesn't support WSL, then what does Linux subsystem option mean?

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?



Prove that if $p$ is prime and $a^7-b^3=p^2$ then $textgcd(a,b)=1$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)How can I prove that $gcd(a,b)=1implies gcd(a^2,b^2)=1$ without using prime decomposition?Show that $gcd(a,bc)=1$ if and only if $gcd(a,b)=1$ and $gcd(a,c)=1$Prove that if $gcd(a,b)=1$ then $gcd(ab,c) = gcd(a,c) gcd(b,c)$If $gcd(a,n)=gcd(b,n)=1$, then show that $gcd(ab pmod n, n)=1$prove that $operatornamelcm(n,m) = nm/gcd(n,m)$If $gcd (b,c)=1$, then for all $ain mathbb Z$, $gcd(gcd(a,b),gcd (a,c))=1$.Let $p$ be a prime. Suppose that $gcd(a, b) = p$. Find $gcd(a^2,b)$ for all integers $a$ and $b$.$mathoptextlcm[n,100] = gcd(n,100)+450~?$Prove that for all integers $r, s$ and $t$, that $gcd(gcd(r, s), t) = gcd(r, gcd(s, t))$.Prove that for any integers a and b and c, gcd(a, b) = gcd(a + bc, a + b(c − 1))










1












$begingroup$



Prove that if $p$ is prime and $a^7-b^3=p^2$ then $textgcd(a,b)=1$.




Any help is appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Highest common factor, he means that $a$ and $b$ are coprime.
    $endgroup$
    – stuart stevenson
    Apr 1 at 19:01










  • $begingroup$
    Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.
    $endgroup$
    – fleablood
    Apr 1 at 19:13















1












$begingroup$



Prove that if $p$ is prime and $a^7-b^3=p^2$ then $textgcd(a,b)=1$.




Any help is appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Highest common factor, he means that $a$ and $b$ are coprime.
    $endgroup$
    – stuart stevenson
    Apr 1 at 19:01










  • $begingroup$
    Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.
    $endgroup$
    – fleablood
    Apr 1 at 19:13













1












1








1





$begingroup$



Prove that if $p$ is prime and $a^7-b^3=p^2$ then $textgcd(a,b)=1$.




Any help is appreciated.










share|cite|improve this question











$endgroup$





Prove that if $p$ is prime and $a^7-b^3=p^2$ then $textgcd(a,b)=1$.




Any help is appreciated.







elementary-number-theory proof-explanation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 2 at 17:08









Maria Mazur

50.3k1361126




50.3k1361126










asked Apr 1 at 18:59









Mathstudent123Mathstudent123

93




93











  • $begingroup$
    Highest common factor, he means that $a$ and $b$ are coprime.
    $endgroup$
    – stuart stevenson
    Apr 1 at 19:01










  • $begingroup$
    Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.
    $endgroup$
    – fleablood
    Apr 1 at 19:13
















  • $begingroup$
    Highest common factor, he means that $a$ and $b$ are coprime.
    $endgroup$
    – stuart stevenson
    Apr 1 at 19:01










  • $begingroup$
    Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.
    $endgroup$
    – fleablood
    Apr 1 at 19:13















$begingroup$
Highest common factor, he means that $a$ and $b$ are coprime.
$endgroup$
– stuart stevenson
Apr 1 at 19:01




$begingroup$
Highest common factor, he means that $a$ and $b$ are coprime.
$endgroup$
– stuart stevenson
Apr 1 at 19:01












$begingroup$
Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.
$endgroup$
– fleablood
Apr 1 at 19:13




$begingroup$
Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.
$endgroup$
– fleablood
Apr 1 at 19:13










2 Answers
2






active

oldest

votes


















2












$begingroup$

If $q$ is a prime which divides both $a$ and $b$ then $q^3$ divides $p^2$. A contradiction.



So there is no prime that divides $a$ and $b$ and thus $gcd (a,b)=1$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
    $endgroup$
    – Dietrich Burde
    Apr 1 at 19:07










  • $begingroup$
    @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
    $endgroup$
    – FredH
    Apr 1 at 22:36



















1












$begingroup$

Well the $hcf(a,b)$ will divide both $a^7$ and $b^3$ so it will divide $a^7 - b^3$ so it will divide $p^2$. But $p$ is prime so....



What are the only divisors of $p^2$? $hcf(a,b)$ will have to be one of these.



For each of these choices what do you get when you look at $frac a^7hcf(a,b) - frac b^3hcf(a,b) = frac p^2hcf(a,b)$?



Which of those choices will allow this to be true?



===



Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.



So $a^6*frac ahcf(a,b) - b^2frac bhcf(a,b) = frac p^2hfc(a,b)$. So that means $frac p^2hfc(a,b)$ is also a multiple of $hcf(a,b)$.



So $a^5 (frac ahcf(a,b) )^2 - b(frac bhcf(a,b))^2 = frac p^2hcf^2(a,b)$. So that means that $frac p^2hcf^2(a,b)$ is also a multiple of $hcf(a,b)$.



So $a^5(frac ahcf(a,b) )^3- (frac bhcf(a,b))^3 = frac p^2hcf^3(a,b)$ is an integer.



How can $frac p^2hcf^3(a,b)$ possibly be an integer?






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171019%2fprove-that-if-p-is-prime-and-a7-b3-p2-then-textgcda-b-1%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If $q$ is a prime which divides both $a$ and $b$ then $q^3$ divides $p^2$. A contradiction.



    So there is no prime that divides $a$ and $b$ and thus $gcd (a,b)=1$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
      $endgroup$
      – Dietrich Burde
      Apr 1 at 19:07










    • $begingroup$
      @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
      $endgroup$
      – FredH
      Apr 1 at 22:36
















    2












    $begingroup$

    If $q$ is a prime which divides both $a$ and $b$ then $q^3$ divides $p^2$. A contradiction.



    So there is no prime that divides $a$ and $b$ and thus $gcd (a,b)=1$.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
      $endgroup$
      – Dietrich Burde
      Apr 1 at 19:07










    • $begingroup$
      @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
      $endgroup$
      – FredH
      Apr 1 at 22:36














    2












    2








    2





    $begingroup$

    If $q$ is a prime which divides both $a$ and $b$ then $q^3$ divides $p^2$. A contradiction.



    So there is no prime that divides $a$ and $b$ and thus $gcd (a,b)=1$.






    share|cite|improve this answer











    $endgroup$



    If $q$ is a prime which divides both $a$ and $b$ then $q^3$ divides $p^2$. A contradiction.



    So there is no prime that divides $a$ and $b$ and thus $gcd (a,b)=1$.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 1 at 19:08

























    answered Apr 1 at 19:04









    Maria MazurMaria Mazur

    50.3k1361126




    50.3k1361126











    • $begingroup$
      Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
      $endgroup$
      – Dietrich Burde
      Apr 1 at 19:07










    • $begingroup$
      @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
      $endgroup$
      – FredH
      Apr 1 at 22:36

















    • $begingroup$
      Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
      $endgroup$
      – Dietrich Burde
      Apr 1 at 19:07










    • $begingroup$
      @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
      $endgroup$
      – FredH
      Apr 1 at 22:36
















    $begingroup$
    Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
    $endgroup$
    – Dietrich Burde
    Apr 1 at 19:07




    $begingroup$
    Is this an empty conclusion, i.e., are there perhaps no integers $a,b$ with $a^7-b^3=p^2$?
    $endgroup$
    – Dietrich Burde
    Apr 1 at 19:07












    $begingroup$
    @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
    $endgroup$
    – FredH
    Apr 1 at 22:36





    $begingroup$
    @DietrichBurde All integral solutions to $a^7 - b^3 = c^2$ are known; the only possible prime values of $c$ are $3$ ($1^7 - (-2)^3 = 3^2$) and $71$ ($2^7 - (-17)^3 = 71^2$).
    $endgroup$
    – FredH
    Apr 1 at 22:36












    1












    $begingroup$

    Well the $hcf(a,b)$ will divide both $a^7$ and $b^3$ so it will divide $a^7 - b^3$ so it will divide $p^2$. But $p$ is prime so....



    What are the only divisors of $p^2$? $hcf(a,b)$ will have to be one of these.



    For each of these choices what do you get when you look at $frac a^7hcf(a,b) - frac b^3hcf(a,b) = frac p^2hcf(a,b)$?



    Which of those choices will allow this to be true?



    ===



    Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.



    So $a^6*frac ahcf(a,b) - b^2frac bhcf(a,b) = frac p^2hfc(a,b)$. So that means $frac p^2hfc(a,b)$ is also a multiple of $hcf(a,b)$.



    So $a^5 (frac ahcf(a,b) )^2 - b(frac bhcf(a,b))^2 = frac p^2hcf^2(a,b)$. So that means that $frac p^2hcf^2(a,b)$ is also a multiple of $hcf(a,b)$.



    So $a^5(frac ahcf(a,b) )^3- (frac bhcf(a,b))^3 = frac p^2hcf^3(a,b)$ is an integer.



    How can $frac p^2hcf^3(a,b)$ possibly be an integer?






    share|cite|improve this answer











    $endgroup$

















      1












      $begingroup$

      Well the $hcf(a,b)$ will divide both $a^7$ and $b^3$ so it will divide $a^7 - b^3$ so it will divide $p^2$. But $p$ is prime so....



      What are the only divisors of $p^2$? $hcf(a,b)$ will have to be one of these.



      For each of these choices what do you get when you look at $frac a^7hcf(a,b) - frac b^3hcf(a,b) = frac p^2hcf(a,b)$?



      Which of those choices will allow this to be true?



      ===



      Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.



      So $a^6*frac ahcf(a,b) - b^2frac bhcf(a,b) = frac p^2hfc(a,b)$. So that means $frac p^2hfc(a,b)$ is also a multiple of $hcf(a,b)$.



      So $a^5 (frac ahcf(a,b) )^2 - b(frac bhcf(a,b))^2 = frac p^2hcf^2(a,b)$. So that means that $frac p^2hcf^2(a,b)$ is also a multiple of $hcf(a,b)$.



      So $a^5(frac ahcf(a,b) )^3- (frac bhcf(a,b))^3 = frac p^2hcf^3(a,b)$ is an integer.



      How can $frac p^2hcf^3(a,b)$ possibly be an integer?






      share|cite|improve this answer











      $endgroup$















        1












        1








        1





        $begingroup$

        Well the $hcf(a,b)$ will divide both $a^7$ and $b^3$ so it will divide $a^7 - b^3$ so it will divide $p^2$. But $p$ is prime so....



        What are the only divisors of $p^2$? $hcf(a,b)$ will have to be one of these.



        For each of these choices what do you get when you look at $frac a^7hcf(a,b) - frac b^3hcf(a,b) = frac p^2hcf(a,b)$?



        Which of those choices will allow this to be true?



        ===



        Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.



        So $a^6*frac ahcf(a,b) - b^2frac bhcf(a,b) = frac p^2hfc(a,b)$. So that means $frac p^2hfc(a,b)$ is also a multiple of $hcf(a,b)$.



        So $a^5 (frac ahcf(a,b) )^2 - b(frac bhcf(a,b))^2 = frac p^2hcf^2(a,b)$. So that means that $frac p^2hcf^2(a,b)$ is also a multiple of $hcf(a,b)$.



        So $a^5(frac ahcf(a,b) )^3- (frac bhcf(a,b))^3 = frac p^2hcf^3(a,b)$ is an integer.



        How can $frac p^2hcf^3(a,b)$ possibly be an integer?






        share|cite|improve this answer











        $endgroup$



        Well the $hcf(a,b)$ will divide both $a^7$ and $b^3$ so it will divide $a^7 - b^3$ so it will divide $p^2$. But $p$ is prime so....



        What are the only divisors of $p^2$? $hcf(a,b)$ will have to be one of these.



        For each of these choices what do you get when you look at $frac a^7hcf(a,b) - frac b^3hcf(a,b) = frac p^2hcf(a,b)$?



        Which of those choices will allow this to be true?



        ===



        Are you familiar with Bezouts Lemma? $ma + nb=k$ will mean that $k$ is a multiple of $hcf(a,b)$. So $a^7 - b^3= p^2$ means $p^2$ is a multiple of $hcf(a,b)$.



        So $a^6*frac ahcf(a,b) - b^2frac bhcf(a,b) = frac p^2hfc(a,b)$. So that means $frac p^2hfc(a,b)$ is also a multiple of $hcf(a,b)$.



        So $a^5 (frac ahcf(a,b) )^2 - b(frac bhcf(a,b))^2 = frac p^2hcf^2(a,b)$. So that means that $frac p^2hcf^2(a,b)$ is also a multiple of $hcf(a,b)$.



        So $a^5(frac ahcf(a,b) )^3- (frac bhcf(a,b))^3 = frac p^2hcf^3(a,b)$ is an integer.



        How can $frac p^2hcf^3(a,b)$ possibly be an integer?







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 1 at 19:20

























        answered Apr 1 at 19:10









        fleabloodfleablood

        1




        1



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171019%2fprove-that-if-p-is-prime-and-a7-b3-p2-then-textgcda-b-1%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu