Having matrices $A$ and $T$, find $S$ such that $A=ST$. But what if $det T=0$? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Matrices M such that for a fixed A there exists B such that M = AMBFind a matrix with determinant equals to $det(A)det(D)-det(B)det(C)$Find matrix that satisfies matrix equationFind $X$ such that $XX'=AA'-BB'$ where $A$ and $B$ are known real matricesConstruct a matrix $M$ from $A$ and $B$ such that $det(M)=det(A)-det(B)$Linear algebra, construction of counter example for two rectangular matrices such that $AB=I$ but $BAneq I$Matrices such that $det(AB-pI_m) = det(BA-pI_n) longrightarrow p|det(AB)$Show that $log(det(H_1)) ≤ log(det(H_2)) + operatornametr[H^-1_2H_1]−N$ for all positive semidefinite matrices $H_1,H_2 in C^N$How to find examples of such square matrices?Given two square matrices $A$ and $B$, how can I be sure that $C$ exists in here $AC = B$?

Project Euler #1 in C++

Chinese Seal on silk painting - what does it mean?

Amount of permutations on an NxNxN Rubik's Cube

How do living politicians protect their readily obtainable signatures from misuse?

SF book about people trapped in a series of worlds they imagine

What initially awakened the Balrog?

Putting class ranking in CV, but against dept guidelines

Generate an RGB colour grid

Is it possible for SQL statements to execute concurrently within a single session in SQL Server?

Crossing US/Canada Border for less than 24 hours

Is CEO the "profession" with the most psychopaths?

How to tell that you are a giant?

Why is the AVR GCC compiler using a full `CALL` even though I have set the `-mshort-calls` flag?

Is there a kind of relay only consumes power when switching?

Why is Nikon 1.4g better when Nikon 1.8g is sharper?

Significance of Cersei's obsession with elephants?

Maximum summed subsequences with non-adjacent items

How could we fake a moon landing now?

How to write the following sign?

Question about debouncing - delay of state change

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Why weren't discrete x86 CPUs ever used in game hardware?

Why wasn't DOSKEY integrated with COMMAND.COM?

How would a mousetrap for use in space work?



Having matrices $A$ and $T$, find $S$ such that $A=ST$. But what if $det T=0$?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Matrices M such that for a fixed A there exists B such that M = AMBFind a matrix with determinant equals to $det(A)det(D)-det(B)det(C)$Find matrix that satisfies matrix equationFind $X$ such that $XX'=AA'-BB'$ where $A$ and $B$ are known real matricesConstruct a matrix $M$ from $A$ and $B$ such that $det(M)=det(A)-det(B)$Linear algebra, construction of counter example for two rectangular matrices such that $AB=I$ but $BAneq I$Matrices such that $det(AB-pI_m) = det(BA-pI_n) longrightarrow p|det(AB)$Show that $log(det(H_1)) ≤ log(det(H_2)) + operatornametr[H^-1_2H_1]−N$ for all positive semidefinite matrices $H_1,H_2 in C^N$How to find examples of such square matrices?Given two square matrices $A$ and $B$, how can I be sure that $C$ exists in here $AC = B$?










2












$begingroup$


We have as a known data matrices $A$,$T$.



We want to find $S$ that $A=ST$.
What I would do is multiply $T^-1$ from right side.



$AT^-1=S$



And here we have $S$, but what if $det(T)=0$ so matrix $T^-1$ does not exists.
Does it implify that searched $S$ also does not exists?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Not necessarily. But, if $A$ has higher rank than $T$, then there is no valid $S$.
    $endgroup$
    – Don Thousand
    Apr 1 at 18:23






  • 2




    $begingroup$
    And if it does exist, it is not unique, since you can add any S whose null space contains the range of $T$.
    $endgroup$
    – Robert Israel
    Apr 1 at 18:45















2












$begingroup$


We have as a known data matrices $A$,$T$.



We want to find $S$ that $A=ST$.
What I would do is multiply $T^-1$ from right side.



$AT^-1=S$



And here we have $S$, but what if $det(T)=0$ so matrix $T^-1$ does not exists.
Does it implify that searched $S$ also does not exists?










share|cite|improve this question











$endgroup$











  • $begingroup$
    Not necessarily. But, if $A$ has higher rank than $T$, then there is no valid $S$.
    $endgroup$
    – Don Thousand
    Apr 1 at 18:23






  • 2




    $begingroup$
    And if it does exist, it is not unique, since you can add any S whose null space contains the range of $T$.
    $endgroup$
    – Robert Israel
    Apr 1 at 18:45













2












2








2





$begingroup$


We have as a known data matrices $A$,$T$.



We want to find $S$ that $A=ST$.
What I would do is multiply $T^-1$ from right side.



$AT^-1=S$



And here we have $S$, but what if $det(T)=0$ so matrix $T^-1$ does not exists.
Does it implify that searched $S$ also does not exists?










share|cite|improve this question











$endgroup$




We have as a known data matrices $A$,$T$.



We want to find $S$ that $A=ST$.
What I would do is multiply $T^-1$ from right side.



$AT^-1=S$



And here we have $S$, but what if $det(T)=0$ so matrix $T^-1$ does not exists.
Does it implify that searched $S$ also does not exists?







linear-algebra matrices matrix-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 2 at 13:07









José Carlos Santos

176k24135244




176k24135244










asked Apr 1 at 18:21









Michał LisMichał Lis

133




133











  • $begingroup$
    Not necessarily. But, if $A$ has higher rank than $T$, then there is no valid $S$.
    $endgroup$
    – Don Thousand
    Apr 1 at 18:23






  • 2




    $begingroup$
    And if it does exist, it is not unique, since you can add any S whose null space contains the range of $T$.
    $endgroup$
    – Robert Israel
    Apr 1 at 18:45
















  • $begingroup$
    Not necessarily. But, if $A$ has higher rank than $T$, then there is no valid $S$.
    $endgroup$
    – Don Thousand
    Apr 1 at 18:23






  • 2




    $begingroup$
    And if it does exist, it is not unique, since you can add any S whose null space contains the range of $T$.
    $endgroup$
    – Robert Israel
    Apr 1 at 18:45















$begingroup$
Not necessarily. But, if $A$ has higher rank than $T$, then there is no valid $S$.
$endgroup$
– Don Thousand
Apr 1 at 18:23




$begingroup$
Not necessarily. But, if $A$ has higher rank than $T$, then there is no valid $S$.
$endgroup$
– Don Thousand
Apr 1 at 18:23




2




2




$begingroup$
And if it does exist, it is not unique, since you can add any S whose null space contains the range of $T$.
$endgroup$
– Robert Israel
Apr 1 at 18:45




$begingroup$
And if it does exist, it is not unique, since you can add any S whose null space contains the range of $T$.
$endgroup$
– Robert Israel
Apr 1 at 18:45










2 Answers
2






active

oldest

votes


















1












$begingroup$

The matrix $S$ may exist, but it is also possible that it doesn't exist. If, for instance, $det Aneq0$, then, since $det T=0$, you can be sure that it doesn't exist.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$

    Suppose $S$ exists and we're dealing with square matrices. Then if $Tv=0$, we also have $Av=0$.



    Since the null space of $T$ is contained in the null space of $A$, the rank-nullity theorem tells us that the rank of $T$ is greater than or equal than the rank of $A$.



    Thus $S$ cannot exist if the rank of $A$ is greater than the rank of $T$.



    Actually, the matrix $S$ exists if and only if the null space of $T$ is contained in the null space of $A$. It's perhaps simpler to show it with linear maps.



    We have linear maps $fcolon Vto V$ and $gcolon Vto V$ (with $V$ a finite dimensional space) such that $ker gsubseteqker f$. We want to find $hcolon Vto V$ such that $f=hcirc g$.



    Take a basis $v_1,dots,v_k$ of $ker g$ and extend it to a basis of $V$. Then it's easy to show that $w_k+1=g(v_k+1),dots,w_n=g(v_n)$ is linearly independent, so we can extend it to a basis $w_1,dots,w_k,w_k+1,dots,w_n$ of $V$.



    Now define $h$ on this basis by
    $$
    h(w_i)=begincases
    0 & 1le ile k \[4px]
    f(v_i) & k+1le ile n
    endcases
    $$

    Since, for every $i$, we have $h(g(v_i))=f(v_i)$, we can conclude that $hcirc g=f$.



    Now take for $f$ and $g$ the linear maps induced by $A$ and $T$ respectively: $f(v)=Av$ and $g(v)=Tv$; for $S$ use the matrix of $h$ with respect to the standard basis.



    Of course the condition that the null space of $T$ is contained in the null space of $A$ is satisfied if $T$ is invertible.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170950%2fhaving-matrices-a-and-t-find-s-such-that-a-st-but-what-if-det-t-0%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      The matrix $S$ may exist, but it is also possible that it doesn't exist. If, for instance, $det Aneq0$, then, since $det T=0$, you can be sure that it doesn't exist.






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        The matrix $S$ may exist, but it is also possible that it doesn't exist. If, for instance, $det Aneq0$, then, since $det T=0$, you can be sure that it doesn't exist.






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          The matrix $S$ may exist, but it is also possible that it doesn't exist. If, for instance, $det Aneq0$, then, since $det T=0$, you can be sure that it doesn't exist.






          share|cite|improve this answer









          $endgroup$



          The matrix $S$ may exist, but it is also possible that it doesn't exist. If, for instance, $det Aneq0$, then, since $det T=0$, you can be sure that it doesn't exist.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 1 at 18:24









          José Carlos SantosJosé Carlos Santos

          176k24135244




          176k24135244





















              0












              $begingroup$

              Suppose $S$ exists and we're dealing with square matrices. Then if $Tv=0$, we also have $Av=0$.



              Since the null space of $T$ is contained in the null space of $A$, the rank-nullity theorem tells us that the rank of $T$ is greater than or equal than the rank of $A$.



              Thus $S$ cannot exist if the rank of $A$ is greater than the rank of $T$.



              Actually, the matrix $S$ exists if and only if the null space of $T$ is contained in the null space of $A$. It's perhaps simpler to show it with linear maps.



              We have linear maps $fcolon Vto V$ and $gcolon Vto V$ (with $V$ a finite dimensional space) such that $ker gsubseteqker f$. We want to find $hcolon Vto V$ such that $f=hcirc g$.



              Take a basis $v_1,dots,v_k$ of $ker g$ and extend it to a basis of $V$. Then it's easy to show that $w_k+1=g(v_k+1),dots,w_n=g(v_n)$ is linearly independent, so we can extend it to a basis $w_1,dots,w_k,w_k+1,dots,w_n$ of $V$.



              Now define $h$ on this basis by
              $$
              h(w_i)=begincases
              0 & 1le ile k \[4px]
              f(v_i) & k+1le ile n
              endcases
              $$

              Since, for every $i$, we have $h(g(v_i))=f(v_i)$, we can conclude that $hcirc g=f$.



              Now take for $f$ and $g$ the linear maps induced by $A$ and $T$ respectively: $f(v)=Av$ and $g(v)=Tv$; for $S$ use the matrix of $h$ with respect to the standard basis.



              Of course the condition that the null space of $T$ is contained in the null space of $A$ is satisfied if $T$ is invertible.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$

                Suppose $S$ exists and we're dealing with square matrices. Then if $Tv=0$, we also have $Av=0$.



                Since the null space of $T$ is contained in the null space of $A$, the rank-nullity theorem tells us that the rank of $T$ is greater than or equal than the rank of $A$.



                Thus $S$ cannot exist if the rank of $A$ is greater than the rank of $T$.



                Actually, the matrix $S$ exists if and only if the null space of $T$ is contained in the null space of $A$. It's perhaps simpler to show it with linear maps.



                We have linear maps $fcolon Vto V$ and $gcolon Vto V$ (with $V$ a finite dimensional space) such that $ker gsubseteqker f$. We want to find $hcolon Vto V$ such that $f=hcirc g$.



                Take a basis $v_1,dots,v_k$ of $ker g$ and extend it to a basis of $V$. Then it's easy to show that $w_k+1=g(v_k+1),dots,w_n=g(v_n)$ is linearly independent, so we can extend it to a basis $w_1,dots,w_k,w_k+1,dots,w_n$ of $V$.



                Now define $h$ on this basis by
                $$
                h(w_i)=begincases
                0 & 1le ile k \[4px]
                f(v_i) & k+1le ile n
                endcases
                $$

                Since, for every $i$, we have $h(g(v_i))=f(v_i)$, we can conclude that $hcirc g=f$.



                Now take for $f$ and $g$ the linear maps induced by $A$ and $T$ respectively: $f(v)=Av$ and $g(v)=Tv$; for $S$ use the matrix of $h$ with respect to the standard basis.



                Of course the condition that the null space of $T$ is contained in the null space of $A$ is satisfied if $T$ is invertible.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$

                  Suppose $S$ exists and we're dealing with square matrices. Then if $Tv=0$, we also have $Av=0$.



                  Since the null space of $T$ is contained in the null space of $A$, the rank-nullity theorem tells us that the rank of $T$ is greater than or equal than the rank of $A$.



                  Thus $S$ cannot exist if the rank of $A$ is greater than the rank of $T$.



                  Actually, the matrix $S$ exists if and only if the null space of $T$ is contained in the null space of $A$. It's perhaps simpler to show it with linear maps.



                  We have linear maps $fcolon Vto V$ and $gcolon Vto V$ (with $V$ a finite dimensional space) such that $ker gsubseteqker f$. We want to find $hcolon Vto V$ such that $f=hcirc g$.



                  Take a basis $v_1,dots,v_k$ of $ker g$ and extend it to a basis of $V$. Then it's easy to show that $w_k+1=g(v_k+1),dots,w_n=g(v_n)$ is linearly independent, so we can extend it to a basis $w_1,dots,w_k,w_k+1,dots,w_n$ of $V$.



                  Now define $h$ on this basis by
                  $$
                  h(w_i)=begincases
                  0 & 1le ile k \[4px]
                  f(v_i) & k+1le ile n
                  endcases
                  $$

                  Since, for every $i$, we have $h(g(v_i))=f(v_i)$, we can conclude that $hcirc g=f$.



                  Now take for $f$ and $g$ the linear maps induced by $A$ and $T$ respectively: $f(v)=Av$ and $g(v)=Tv$; for $S$ use the matrix of $h$ with respect to the standard basis.



                  Of course the condition that the null space of $T$ is contained in the null space of $A$ is satisfied if $T$ is invertible.






                  share|cite|improve this answer









                  $endgroup$



                  Suppose $S$ exists and we're dealing with square matrices. Then if $Tv=0$, we also have $Av=0$.



                  Since the null space of $T$ is contained in the null space of $A$, the rank-nullity theorem tells us that the rank of $T$ is greater than or equal than the rank of $A$.



                  Thus $S$ cannot exist if the rank of $A$ is greater than the rank of $T$.



                  Actually, the matrix $S$ exists if and only if the null space of $T$ is contained in the null space of $A$. It's perhaps simpler to show it with linear maps.



                  We have linear maps $fcolon Vto V$ and $gcolon Vto V$ (with $V$ a finite dimensional space) such that $ker gsubseteqker f$. We want to find $hcolon Vto V$ such that $f=hcirc g$.



                  Take a basis $v_1,dots,v_k$ of $ker g$ and extend it to a basis of $V$. Then it's easy to show that $w_k+1=g(v_k+1),dots,w_n=g(v_n)$ is linearly independent, so we can extend it to a basis $w_1,dots,w_k,w_k+1,dots,w_n$ of $V$.



                  Now define $h$ on this basis by
                  $$
                  h(w_i)=begincases
                  0 & 1le ile k \[4px]
                  f(v_i) & k+1le ile n
                  endcases
                  $$

                  Since, for every $i$, we have $h(g(v_i))=f(v_i)$, we can conclude that $hcirc g=f$.



                  Now take for $f$ and $g$ the linear maps induced by $A$ and $T$ respectively: $f(v)=Av$ and $g(v)=Tv$; for $S$ use the matrix of $h$ with respect to the standard basis.



                  Of course the condition that the null space of $T$ is contained in the null space of $A$ is satisfied if $T$ is invertible.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 1 at 22:30









                  egregegreg

                  186k1486209




                  186k1486209



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170950%2fhaving-matrices-a-and-t-find-s-such-that-a-st-but-what-if-det-t-0%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu