Find number of solutions $ x_1+x_2+x_3+x_4+x_5+x_6+x_7 = 7 $ where $x_i in left 0,1,2 right$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 29$?Evaluating the boolean sum $sum_x_1, x_2, x_3, x_4, x_6, x_7 neg(x_1 oplus x_4 oplus x_3 oplus x_6) neg(x_4 oplus x_3 oplus x_2 oplus x_7)$Integer solutions of $x_1+x_2+x_3+x_4+x_5+x_6=19$ if every $x_i ge 2$Find the number of integer solutons to $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 60$.Determine the number of integer solutions for $x_1+x_2+x_3+x_4+x_5 < 40$How many natural solutions to $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24$ if $x_1 + x_2 + x_3 > x_4 + x_5 + x_6$?Find the number of solutions of the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = N$ subject to constraintsHow many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 21$,How many distinct values of $x_1+x_2+x_3+x_4+x_5+x_6+x_7$ when $x_1,x_2,x_3,..,x_7 in 0,3,4,5$Combinatorics: Number of Integer Solutions for $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 < 56$?

How often does castling occur in grandmaster games?

Is a ledger board required if the side of my house is wood?

What is "gratricide"?

How fail-safe is nr as stop bytes?

Amount of permutations on an NxNxN Rubik's Cube

Why is the AVR GCC compiler using a full `CALL` even though I have set the `-mshort-calls` flag?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

Morning, Afternoon, Night Kanji

Did Krishna say in Bhagavad Gita "I am in every living being"

Why wasn't DOSKEY integrated with COMMAND.COM?

What is the appropriate index architecture when forced to implement IsDeleted (soft deletes)?

How much damage would a cupful of neutron star matter do to the Earth?

How come Sam didn't become Lord of Horn Hill?

Why aren't air breathing engines used as small first stages?

How do living politicians protect their readily obtainable signatures from misuse?

How to write this math term? with cases it isn't working

How to tell that you are a giant?

Generate an RGB colour grid

As a beginner, should I get a Squier Strat with a SSS config or a HSS?

Find 108 by using 3,4,6

What would you call this weird metallic apparatus that allows you to lift people?

What is a fractional matching?

Why is Nikon 1.4g better when Nikon 1.8g is sharper?

Is CEO the "profession" with the most psychopaths?



Find number of solutions $ x_1+x_2+x_3+x_4+x_5+x_6+x_7 = 7 $ where $x_i in left 0,1,2 right$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)How many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 29$?Evaluating the boolean sum $sum_x_1, x_2, x_3, x_4, x_6, x_7 neg(x_1 oplus x_4 oplus x_3 oplus x_6) neg(x_4 oplus x_3 oplus x_2 oplus x_7)$Integer solutions of $x_1+x_2+x_3+x_4+x_5+x_6=19$ if every $x_i ge 2$Find the number of integer solutons to $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 60$.Determine the number of integer solutions for $x_1+x_2+x_3+x_4+x_5 < 40$How many natural solutions to $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 24$ if $x_1 + x_2 + x_3 > x_4 + x_5 + x_6$?Find the number of solutions of the equation $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = N$ subject to constraintsHow many solutions are there to the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 21$,How many distinct values of $x_1+x_2+x_3+x_4+x_5+x_6+x_7$ when $x_1,x_2,x_3,..,x_7 in 0,3,4,5$Combinatorics: Number of Integer Solutions for $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 < 56$?










5












$begingroup$


Find number of solutions
$$ x_1+x_2+x_3+x_4+x_5+x_6+x_7 = 7 text such that forall_i x_i in left0,1,2right$$
I know how I can do this when I don't have restriction $forall_i x_i in left0,1,2right$:
$$ ooooooooooooo text n+(k-1) = 7 + (7-1) = 13 balls $$
$$ oo||o|oo|o|o| text k-1 = 6 balls I replace with sticks $$
and I have $$ 2 + 0 + 1 + 2 + 1 + 1 + 0 = 7 $$
I can do this in $$ binomn+k-1k = binom137 $$ ways. But how to deal with additional restriction?










share|cite|improve this question









$endgroup$
















    5












    $begingroup$


    Find number of solutions
    $$ x_1+x_2+x_3+x_4+x_5+x_6+x_7 = 7 text such that forall_i x_i in left0,1,2right$$
    I know how I can do this when I don't have restriction $forall_i x_i in left0,1,2right$:
    $$ ooooooooooooo text n+(k-1) = 7 + (7-1) = 13 balls $$
    $$ oo||o|oo|o|o| text k-1 = 6 balls I replace with sticks $$
    and I have $$ 2 + 0 + 1 + 2 + 1 + 1 + 0 = 7 $$
    I can do this in $$ binomn+k-1k = binom137 $$ ways. But how to deal with additional restriction?










    share|cite|improve this question









    $endgroup$














      5












      5








      5





      $begingroup$


      Find number of solutions
      $$ x_1+x_2+x_3+x_4+x_5+x_6+x_7 = 7 text such that forall_i x_i in left0,1,2right$$
      I know how I can do this when I don't have restriction $forall_i x_i in left0,1,2right$:
      $$ ooooooooooooo text n+(k-1) = 7 + (7-1) = 13 balls $$
      $$ oo||o|oo|o|o| text k-1 = 6 balls I replace with sticks $$
      and I have $$ 2 + 0 + 1 + 2 + 1 + 1 + 0 = 7 $$
      I can do this in $$ binomn+k-1k = binom137 $$ ways. But how to deal with additional restriction?










      share|cite|improve this question









      $endgroup$




      Find number of solutions
      $$ x_1+x_2+x_3+x_4+x_5+x_6+x_7 = 7 text such that forall_i x_i in left0,1,2right$$
      I know how I can do this when I don't have restriction $forall_i x_i in left0,1,2right$:
      $$ ooooooooooooo text n+(k-1) = 7 + (7-1) = 13 balls $$
      $$ oo||o|oo|o|o| text k-1 = 6 balls I replace with sticks $$
      and I have $$ 2 + 0 + 1 + 2 + 1 + 1 + 0 = 7 $$
      I can do this in $$ binomn+k-1k = binom137 $$ ways. But how to deal with additional restriction?







      combinatorics discrete-mathematics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Apr 1 at 18:27









      VirtualUserVirtualUser

      1,319317




      1,319317




















          5 Answers
          5






          active

          oldest

          votes


















          3












          $begingroup$

          The number of unique combinations of numbers summed to achieve $7$ in such a way are
          $$1,1,1,1,1,1,1$$
          $$2,1,1,1,1,1$$
          $$2,2,1,1,1$$
          $$2,2,2,1$$
          So the total number of solutions is given by
          $$frac7!7!+frac7!5!+frac7!3!cdot2!cdot2!+frac7!3!cdot3!=393$$






          share|cite|improve this answer









          $endgroup$




















            5












            $begingroup$

            Hint: The answer is the coefficient of $x^7$ in $(1 + x + x^2)^7$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I know, I get this from generating function.
              $endgroup$
              – VirtualUser
              Apr 1 at 18:32










            • $begingroup$
              So can you compute it?
              $endgroup$
              – Robert Israel
              Apr 1 at 18:32










            • $begingroup$
              Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
              $endgroup$
              – VirtualUser
              Apr 1 at 18:34










            • $begingroup$
              I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
              $endgroup$
              – VirtualUser
              Apr 1 at 18:39










            • $begingroup$
              The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
              $endgroup$
              – Mark Fischler
              Apr 1 at 18:44


















            4












            $begingroup$

            Hint: You want the coefficient of $x^7$ in
            $$
            (1+x+x^2)^7=left(frac1-x^31-xright)^7=(1-x^3)^7times (1-x)^-7
            $$

            Now, $(1-x^3)^7$ and $ (1-x)^-1$ are the generating functions of two nice series, $a_n$ and $b_n$; can you find them? Once you do, since you want the convolution of these two series:
            $$
            sum_k=0^7 a_kb_n-k.
            $$

            Furthermore, you will find that $a_k$ equals zero unless $k$ is a multiple of $3$, so that the above summation is has only three nonzero terms and is therefore easily computable by hand.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
              $endgroup$
              – VirtualUser
              Apr 1 at 20:55











            • $begingroup$
              Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
              $endgroup$
              – Mike Earnest
              Apr 1 at 22:56



















            2












            $begingroup$

            The "closed form answer" for the number of ways to assign $x_1, x_2, cdots ,x_k$ such that $forall n : x_n in 0,1,2$ and $sum_n=1^k x_n = k$ is, for odd $k$
            $$
            F^-frack2, -frack-12_1(4)
            $$

            and for even $k$
            $$
            F^-frack-12, -frack2 _1(4)
            $$

            These $F^a,b_c$ are hypergeometric functions.



            This is obtained by letting $n$ be the number of $2$s used and doing
            $$
            sum_n=0^leftlfloorfrack2rightrfloor binomknbinomk-nk-2n
            $$

            and using the techniques put forth in Concrete Mathematics.






            share|cite|improve this answer









            $endgroup$




















              1












              $begingroup$

              From the theory of Generating Functions it's clear the answer boils down to finding the coefficient of $x^7$ in $(1 + x + x^2)^7$,



              Write out the equivalent of Pascal's Triangle for the Trinomial Coefficients, or look it up, or write a quick program to generate them (each term is the sum of the three terms, above left, directly above, above right)
              $$1$$
              $$1 : 1 : 1$$
              $$1: 2: 3: 2: 1$$
              $$1: 3: 6: 7: 6: 3: 1$$
              $$1: 4: 10: 16: 19: 16: 10: 4: 1$$
              $$1: 5: 15: 30: 45: 51: 45: 30: 15: 5: 1$$
              $$1: 6: 21: 50: 90: 126: 141: 126: 90: 50: 21: 6: 1$$
              $$1: 7: 28: 77: 161: 266: 357: 393: 357: 266: 161: 77: 28: 7: 1 $$
              The number sought is the central coefficient in Row 7, the 393.






              share|cite|improve this answer









              $endgroup$













                Your Answer








                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170964%2ffind-number-of-solutions-x-1x-2x-3x-4x-5x-6x-7-7-where-x-i-in-lef%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                5 Answers
                5






                active

                oldest

                votes








                5 Answers
                5






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3












                $begingroup$

                The number of unique combinations of numbers summed to achieve $7$ in such a way are
                $$1,1,1,1,1,1,1$$
                $$2,1,1,1,1,1$$
                $$2,2,1,1,1$$
                $$2,2,2,1$$
                So the total number of solutions is given by
                $$frac7!7!+frac7!5!+frac7!3!cdot2!cdot2!+frac7!3!cdot3!=393$$






                share|cite|improve this answer









                $endgroup$

















                  3












                  $begingroup$

                  The number of unique combinations of numbers summed to achieve $7$ in such a way are
                  $$1,1,1,1,1,1,1$$
                  $$2,1,1,1,1,1$$
                  $$2,2,1,1,1$$
                  $$2,2,2,1$$
                  So the total number of solutions is given by
                  $$frac7!7!+frac7!5!+frac7!3!cdot2!cdot2!+frac7!3!cdot3!=393$$






                  share|cite|improve this answer









                  $endgroup$















                    3












                    3








                    3





                    $begingroup$

                    The number of unique combinations of numbers summed to achieve $7$ in such a way are
                    $$1,1,1,1,1,1,1$$
                    $$2,1,1,1,1,1$$
                    $$2,2,1,1,1$$
                    $$2,2,2,1$$
                    So the total number of solutions is given by
                    $$frac7!7!+frac7!5!+frac7!3!cdot2!cdot2!+frac7!3!cdot3!=393$$






                    share|cite|improve this answer









                    $endgroup$



                    The number of unique combinations of numbers summed to achieve $7$ in such a way are
                    $$1,1,1,1,1,1,1$$
                    $$2,1,1,1,1,1$$
                    $$2,2,1,1,1$$
                    $$2,2,2,1$$
                    So the total number of solutions is given by
                    $$frac7!7!+frac7!5!+frac7!3!cdot2!cdot2!+frac7!3!cdot3!=393$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 1 at 18:36









                    Peter ForemanPeter Foreman

                    8,1421321




                    8,1421321





















                        5












                        $begingroup$

                        Hint: The answer is the coefficient of $x^7$ in $(1 + x + x^2)^7$.






                        share|cite|improve this answer









                        $endgroup$












                        • $begingroup$
                          I know, I get this from generating function.
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:32










                        • $begingroup$
                          So can you compute it?
                          $endgroup$
                          – Robert Israel
                          Apr 1 at 18:32










                        • $begingroup$
                          Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:34










                        • $begingroup$
                          I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:39










                        • $begingroup$
                          The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
                          $endgroup$
                          – Mark Fischler
                          Apr 1 at 18:44















                        5












                        $begingroup$

                        Hint: The answer is the coefficient of $x^7$ in $(1 + x + x^2)^7$.






                        share|cite|improve this answer









                        $endgroup$












                        • $begingroup$
                          I know, I get this from generating function.
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:32










                        • $begingroup$
                          So can you compute it?
                          $endgroup$
                          – Robert Israel
                          Apr 1 at 18:32










                        • $begingroup$
                          Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:34










                        • $begingroup$
                          I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:39










                        • $begingroup$
                          The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
                          $endgroup$
                          – Mark Fischler
                          Apr 1 at 18:44













                        5












                        5








                        5





                        $begingroup$

                        Hint: The answer is the coefficient of $x^7$ in $(1 + x + x^2)^7$.






                        share|cite|improve this answer









                        $endgroup$



                        Hint: The answer is the coefficient of $x^7$ in $(1 + x + x^2)^7$.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Apr 1 at 18:30









                        Robert IsraelRobert Israel

                        332k23222481




                        332k23222481











                        • $begingroup$
                          I know, I get this from generating function.
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:32










                        • $begingroup$
                          So can you compute it?
                          $endgroup$
                          – Robert Israel
                          Apr 1 at 18:32










                        • $begingroup$
                          Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:34










                        • $begingroup$
                          I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:39










                        • $begingroup$
                          The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
                          $endgroup$
                          – Mark Fischler
                          Apr 1 at 18:44
















                        • $begingroup$
                          I know, I get this from generating function.
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:32










                        • $begingroup$
                          So can you compute it?
                          $endgroup$
                          – Robert Israel
                          Apr 1 at 18:32










                        • $begingroup$
                          Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:34










                        • $begingroup$
                          I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 18:39










                        • $begingroup$
                          The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
                          $endgroup$
                          – Mark Fischler
                          Apr 1 at 18:44















                        $begingroup$
                        I know, I get this from generating function.
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 18:32




                        $begingroup$
                        I know, I get this from generating function.
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 18:32












                        $begingroup$
                        So can you compute it?
                        $endgroup$
                        – Robert Israel
                        Apr 1 at 18:32




                        $begingroup$
                        So can you compute it?
                        $endgroup$
                        – Robert Israel
                        Apr 1 at 18:32












                        $begingroup$
                        Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 18:34




                        $begingroup$
                        Do you mean manual? Chmm, there is a lot of calculus. But what if there will be not $7$ but $77$? Unless you think about some smarter way?
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 18:34












                        $begingroup$
                        I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 18:39




                        $begingroup$
                        I was thinking about pattern $(1+x)^n$ but it also doesn't simplify that
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 18:39












                        $begingroup$
                        The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
                        $endgroup$
                        – Mark Fischler
                        Apr 1 at 18:44




                        $begingroup$
                        The result for any particular exponent does not have a nice closed form expression. To use your example, for $77$, the answer is $27cdot 19 cdot 233 cdot 675602617$ times a $22$-digit prime.
                        $endgroup$
                        – Mark Fischler
                        Apr 1 at 18:44











                        4












                        $begingroup$

                        Hint: You want the coefficient of $x^7$ in
                        $$
                        (1+x+x^2)^7=left(frac1-x^31-xright)^7=(1-x^3)^7times (1-x)^-7
                        $$

                        Now, $(1-x^3)^7$ and $ (1-x)^-1$ are the generating functions of two nice series, $a_n$ and $b_n$; can you find them? Once you do, since you want the convolution of these two series:
                        $$
                        sum_k=0^7 a_kb_n-k.
                        $$

                        Furthermore, you will find that $a_k$ equals zero unless $k$ is a multiple of $3$, so that the above summation is has only three nonzero terms and is therefore easily computable by hand.






                        share|cite|improve this answer









                        $endgroup$












                        • $begingroup$
                          $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 20:55











                        • $begingroup$
                          Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
                          $endgroup$
                          – Mike Earnest
                          Apr 1 at 22:56
















                        4












                        $begingroup$

                        Hint: You want the coefficient of $x^7$ in
                        $$
                        (1+x+x^2)^7=left(frac1-x^31-xright)^7=(1-x^3)^7times (1-x)^-7
                        $$

                        Now, $(1-x^3)^7$ and $ (1-x)^-1$ are the generating functions of two nice series, $a_n$ and $b_n$; can you find them? Once you do, since you want the convolution of these two series:
                        $$
                        sum_k=0^7 a_kb_n-k.
                        $$

                        Furthermore, you will find that $a_k$ equals zero unless $k$ is a multiple of $3$, so that the above summation is has only three nonzero terms and is therefore easily computable by hand.






                        share|cite|improve this answer









                        $endgroup$












                        • $begingroup$
                          $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 20:55











                        • $begingroup$
                          Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
                          $endgroup$
                          – Mike Earnest
                          Apr 1 at 22:56














                        4












                        4








                        4





                        $begingroup$

                        Hint: You want the coefficient of $x^7$ in
                        $$
                        (1+x+x^2)^7=left(frac1-x^31-xright)^7=(1-x^3)^7times (1-x)^-7
                        $$

                        Now, $(1-x^3)^7$ and $ (1-x)^-1$ are the generating functions of two nice series, $a_n$ and $b_n$; can you find them? Once you do, since you want the convolution of these two series:
                        $$
                        sum_k=0^7 a_kb_n-k.
                        $$

                        Furthermore, you will find that $a_k$ equals zero unless $k$ is a multiple of $3$, so that the above summation is has only three nonzero terms and is therefore easily computable by hand.






                        share|cite|improve this answer









                        $endgroup$



                        Hint: You want the coefficient of $x^7$ in
                        $$
                        (1+x+x^2)^7=left(frac1-x^31-xright)^7=(1-x^3)^7times (1-x)^-7
                        $$

                        Now, $(1-x^3)^7$ and $ (1-x)^-1$ are the generating functions of two nice series, $a_n$ and $b_n$; can you find them? Once you do, since you want the convolution of these two series:
                        $$
                        sum_k=0^7 a_kb_n-k.
                        $$

                        Furthermore, you will find that $a_k$ equals zero unless $k$ is a multiple of $3$, so that the above summation is has only three nonzero terms and is therefore easily computable by hand.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Apr 1 at 18:53









                        Mike EarnestMike Earnest

                        28.2k22152




                        28.2k22152











                        • $begingroup$
                          $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 20:55











                        • $begingroup$
                          Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
                          $endgroup$
                          – Mike Earnest
                          Apr 1 at 22:56

















                        • $begingroup$
                          $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
                          $endgroup$
                          – VirtualUser
                          Apr 1 at 20:55











                        • $begingroup$
                          Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
                          $endgroup$
                          – Mike Earnest
                          Apr 1 at 22:56
















                        $begingroup$
                        $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 20:55





                        $begingroup$
                        $b_n = 1 $ because we have $1+x+x^2+x^3...$ and but $a_n$ seems to be finite
                        $endgroup$
                        – VirtualUser
                        Apr 1 at 20:55













                        $begingroup$
                        Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
                        $endgroup$
                        – Mike Earnest
                        Apr 1 at 22:56





                        $begingroup$
                        Yes, $a_n$ is finite. $a_3k=binom7k(-1)^k$, and $a_3k+1=a_3k+2=0$. But you expanded $(1-x)^-7=frac1(1-x)^7$ incorrectly. Use Newton's binomial theorem. @VirtualUser
                        $endgroup$
                        – Mike Earnest
                        Apr 1 at 22:56












                        2












                        $begingroup$

                        The "closed form answer" for the number of ways to assign $x_1, x_2, cdots ,x_k$ such that $forall n : x_n in 0,1,2$ and $sum_n=1^k x_n = k$ is, for odd $k$
                        $$
                        F^-frack2, -frack-12_1(4)
                        $$

                        and for even $k$
                        $$
                        F^-frack-12, -frack2 _1(4)
                        $$

                        These $F^a,b_c$ are hypergeometric functions.



                        This is obtained by letting $n$ be the number of $2$s used and doing
                        $$
                        sum_n=0^leftlfloorfrack2rightrfloor binomknbinomk-nk-2n
                        $$

                        and using the techniques put forth in Concrete Mathematics.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          The "closed form answer" for the number of ways to assign $x_1, x_2, cdots ,x_k$ such that $forall n : x_n in 0,1,2$ and $sum_n=1^k x_n = k$ is, for odd $k$
                          $$
                          F^-frack2, -frack-12_1(4)
                          $$

                          and for even $k$
                          $$
                          F^-frack-12, -frack2 _1(4)
                          $$

                          These $F^a,b_c$ are hypergeometric functions.



                          This is obtained by letting $n$ be the number of $2$s used and doing
                          $$
                          sum_n=0^leftlfloorfrack2rightrfloor binomknbinomk-nk-2n
                          $$

                          and using the techniques put forth in Concrete Mathematics.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            The "closed form answer" for the number of ways to assign $x_1, x_2, cdots ,x_k$ such that $forall n : x_n in 0,1,2$ and $sum_n=1^k x_n = k$ is, for odd $k$
                            $$
                            F^-frack2, -frack-12_1(4)
                            $$

                            and for even $k$
                            $$
                            F^-frack-12, -frack2 _1(4)
                            $$

                            These $F^a,b_c$ are hypergeometric functions.



                            This is obtained by letting $n$ be the number of $2$s used and doing
                            $$
                            sum_n=0^leftlfloorfrack2rightrfloor binomknbinomk-nk-2n
                            $$

                            and using the techniques put forth in Concrete Mathematics.






                            share|cite|improve this answer









                            $endgroup$



                            The "closed form answer" for the number of ways to assign $x_1, x_2, cdots ,x_k$ such that $forall n : x_n in 0,1,2$ and $sum_n=1^k x_n = k$ is, for odd $k$
                            $$
                            F^-frack2, -frack-12_1(4)
                            $$

                            and for even $k$
                            $$
                            F^-frack-12, -frack2 _1(4)
                            $$

                            These $F^a,b_c$ are hypergeometric functions.



                            This is obtained by letting $n$ be the number of $2$s used and doing
                            $$
                            sum_n=0^leftlfloorfrack2rightrfloor binomknbinomk-nk-2n
                            $$

                            and using the techniques put forth in Concrete Mathematics.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 1 at 19:07









                            Mark FischlerMark Fischler

                            34.5k12552




                            34.5k12552





















                                1












                                $begingroup$

                                From the theory of Generating Functions it's clear the answer boils down to finding the coefficient of $x^7$ in $(1 + x + x^2)^7$,



                                Write out the equivalent of Pascal's Triangle for the Trinomial Coefficients, or look it up, or write a quick program to generate them (each term is the sum of the three terms, above left, directly above, above right)
                                $$1$$
                                $$1 : 1 : 1$$
                                $$1: 2: 3: 2: 1$$
                                $$1: 3: 6: 7: 6: 3: 1$$
                                $$1: 4: 10: 16: 19: 16: 10: 4: 1$$
                                $$1: 5: 15: 30: 45: 51: 45: 30: 15: 5: 1$$
                                $$1: 6: 21: 50: 90: 126: 141: 126: 90: 50: 21: 6: 1$$
                                $$1: 7: 28: 77: 161: 266: 357: 393: 357: 266: 161: 77: 28: 7: 1 $$
                                The number sought is the central coefficient in Row 7, the 393.






                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  $begingroup$

                                  From the theory of Generating Functions it's clear the answer boils down to finding the coefficient of $x^7$ in $(1 + x + x^2)^7$,



                                  Write out the equivalent of Pascal's Triangle for the Trinomial Coefficients, or look it up, or write a quick program to generate them (each term is the sum of the three terms, above left, directly above, above right)
                                  $$1$$
                                  $$1 : 1 : 1$$
                                  $$1: 2: 3: 2: 1$$
                                  $$1: 3: 6: 7: 6: 3: 1$$
                                  $$1: 4: 10: 16: 19: 16: 10: 4: 1$$
                                  $$1: 5: 15: 30: 45: 51: 45: 30: 15: 5: 1$$
                                  $$1: 6: 21: 50: 90: 126: 141: 126: 90: 50: 21: 6: 1$$
                                  $$1: 7: 28: 77: 161: 266: 357: 393: 357: 266: 161: 77: 28: 7: 1 $$
                                  The number sought is the central coefficient in Row 7, the 393.






                                  share|cite|improve this answer









                                  $endgroup$















                                    1












                                    1








                                    1





                                    $begingroup$

                                    From the theory of Generating Functions it's clear the answer boils down to finding the coefficient of $x^7$ in $(1 + x + x^2)^7$,



                                    Write out the equivalent of Pascal's Triangle for the Trinomial Coefficients, or look it up, or write a quick program to generate them (each term is the sum of the three terms, above left, directly above, above right)
                                    $$1$$
                                    $$1 : 1 : 1$$
                                    $$1: 2: 3: 2: 1$$
                                    $$1: 3: 6: 7: 6: 3: 1$$
                                    $$1: 4: 10: 16: 19: 16: 10: 4: 1$$
                                    $$1: 5: 15: 30: 45: 51: 45: 30: 15: 5: 1$$
                                    $$1: 6: 21: 50: 90: 126: 141: 126: 90: 50: 21: 6: 1$$
                                    $$1: 7: 28: 77: 161: 266: 357: 393: 357: 266: 161: 77: 28: 7: 1 $$
                                    The number sought is the central coefficient in Row 7, the 393.






                                    share|cite|improve this answer









                                    $endgroup$



                                    From the theory of Generating Functions it's clear the answer boils down to finding the coefficient of $x^7$ in $(1 + x + x^2)^7$,



                                    Write out the equivalent of Pascal's Triangle for the Trinomial Coefficients, or look it up, or write a quick program to generate them (each term is the sum of the three terms, above left, directly above, above right)
                                    $$1$$
                                    $$1 : 1 : 1$$
                                    $$1: 2: 3: 2: 1$$
                                    $$1: 3: 6: 7: 6: 3: 1$$
                                    $$1: 4: 10: 16: 19: 16: 10: 4: 1$$
                                    $$1: 5: 15: 30: 45: 51: 45: 30: 15: 5: 1$$
                                    $$1: 6: 21: 50: 90: 126: 141: 126: 90: 50: 21: 6: 1$$
                                    $$1: 7: 28: 77: 161: 266: 357: 393: 357: 266: 161: 77: 28: 7: 1 $$
                                    The number sought is the central coefficient in Row 7, the 393.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Apr 7 at 22:29









                                    Martin HansenMartin Hansen

                                    975115




                                    975115



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170964%2ffind-number-of-solutions-x-1x-2x-3x-4x-5x-6x-7-7-where-x-i-in-lef%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                        Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

                                        Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu