Geometric Series to Solve for Year a Resource Will Be Depleted Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Simple derivative task, no function, only values given, how the graph might look?Simplify using Geometric seriesGeometric series for this problem..?Optimizing number of production runs?Solve an geometric seriesGeometric series functionfind the annual per capita spending for personal consumption in doller?Basic Geometric SeriesStarting index for geometric series testSolve geometric series equation with large terms

How to play a character with a disability or mental disorder without being offensive?

Is it fair for a professor to grade us on the possession of past papers?

How to write this math term? with cases it isn't working

What is the difference between globalisation and imperialism?

What does it mean that physics no longer uses mechanical models to describe phenomena?

Most bit efficient text communication method?

Do wooden building fires get hotter than 600°C?

Significance of Cersei's obsession with elephants?

Is grep documentation about ignoring case wrong, since it doesn't ignore case in filenames?

How to compare two different files line by line in unix?

Denied boarding although I have proper visa and documentation. To whom should I make a complaint?

Find 108 by using 3,4,6

What's the meaning of "fortified infraction restraint"?

Effects on objects due to a brief relocation of massive amounts of mass

Maximum summed subsequences with non-adjacent items

Why is Nikon 1.4g better when Nikon 1.8g is sharper?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

Generate an RGB colour grid

Is there a kind of relay only consumes power when switching?

How do I find out the mythology and history of my Fortress?

Chinese Seal on silk painting - what does it mean?

What initially awakened the Balrog?

How does light 'choose' between wave and particle behaviour?

Performance gap between vector<bool> and array



Geometric Series to Solve for Year a Resource Will Be Depleted



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Simple derivative task, no function, only values given, how the graph might look?Simplify using Geometric seriesGeometric series for this problem..?Optimizing number of production runs?Solve an geometric seriesGeometric series functionfind the annual per capita spending for personal consumption in doller?Basic Geometric SeriesStarting index for geometric series testSolve geometric series equation with large terms










0












$begingroup$


The original problem is as follows:




A community has 300 million tons of a non-renewable resource. Annual consumption is 25 million tons per year. Consumption is expected to decrease by 10% each year. Will the resource ever be depleted?




I set up the geometric series as



Total usage = 25[1 + (0.90) + (0.90)^2 + ...]
= 25[1/1-0.90]
= 250 million tons
No, the resource will not be depleted at this rate.


The second part of the problem asks:




What is the minimum percentage they can decrease consumption by to guarantee the resource does not run out?




Total usage = 25[1 + x + x^2 + ...]
= 25[1/1-x] = 300
x = 0.916
Minimum we can decrease consumption by is 8.4%


The final part of the question asks:




Suppose that it is not possible to decrease consumption of this resource by the previously given amount. The population is only able to decrease consumption by 5% each year. After how many years will the resource run out?




But I'm not exactly sure how to set this up. I'm assuming that solving for the year is just solving for n in the series where the sum up to (0.95)^n = 300, but I'm not sure how to go about setting up this equation.










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    The original problem is as follows:




    A community has 300 million tons of a non-renewable resource. Annual consumption is 25 million tons per year. Consumption is expected to decrease by 10% each year. Will the resource ever be depleted?




    I set up the geometric series as



    Total usage = 25[1 + (0.90) + (0.90)^2 + ...]
    = 25[1/1-0.90]
    = 250 million tons
    No, the resource will not be depleted at this rate.


    The second part of the problem asks:




    What is the minimum percentage they can decrease consumption by to guarantee the resource does not run out?




    Total usage = 25[1 + x + x^2 + ...]
    = 25[1/1-x] = 300
    x = 0.916
    Minimum we can decrease consumption by is 8.4%


    The final part of the question asks:




    Suppose that it is not possible to decrease consumption of this resource by the previously given amount. The population is only able to decrease consumption by 5% each year. After how many years will the resource run out?




    But I'm not exactly sure how to set this up. I'm assuming that solving for the year is just solving for n in the series where the sum up to (0.95)^n = 300, but I'm not sure how to go about setting up this equation.










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      The original problem is as follows:




      A community has 300 million tons of a non-renewable resource. Annual consumption is 25 million tons per year. Consumption is expected to decrease by 10% each year. Will the resource ever be depleted?




      I set up the geometric series as



      Total usage = 25[1 + (0.90) + (0.90)^2 + ...]
      = 25[1/1-0.90]
      = 250 million tons
      No, the resource will not be depleted at this rate.


      The second part of the problem asks:




      What is the minimum percentage they can decrease consumption by to guarantee the resource does not run out?




      Total usage = 25[1 + x + x^2 + ...]
      = 25[1/1-x] = 300
      x = 0.916
      Minimum we can decrease consumption by is 8.4%


      The final part of the question asks:




      Suppose that it is not possible to decrease consumption of this resource by the previously given amount. The population is only able to decrease consumption by 5% each year. After how many years will the resource run out?




      But I'm not exactly sure how to set this up. I'm assuming that solving for the year is just solving for n in the series where the sum up to (0.95)^n = 300, but I'm not sure how to go about setting up this equation.










      share|cite|improve this question











      $endgroup$




      The original problem is as follows:




      A community has 300 million tons of a non-renewable resource. Annual consumption is 25 million tons per year. Consumption is expected to decrease by 10% each year. Will the resource ever be depleted?




      I set up the geometric series as



      Total usage = 25[1 + (0.90) + (0.90)^2 + ...]
      = 25[1/1-0.90]
      = 250 million tons
      No, the resource will not be depleted at this rate.


      The second part of the problem asks:




      What is the minimum percentage they can decrease consumption by to guarantee the resource does not run out?




      Total usage = 25[1 + x + x^2 + ...]
      = 25[1/1-x] = 300
      x = 0.916
      Minimum we can decrease consumption by is 8.4%


      The final part of the question asks:




      Suppose that it is not possible to decrease consumption of this resource by the previously given amount. The population is only able to decrease consumption by 5% each year. After how many years will the resource run out?




      But I'm not exactly sure how to set this up. I'm assuming that solving for the year is just solving for n in the series where the sum up to (0.95)^n = 300, but I'm not sure how to go about setting up this equation.







      calculus geometric-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 1 at 19:06









      Andrei

      13.9k21330




      13.9k21330










      asked Apr 1 at 18:51









      John ProctorJohn Proctor

      31




      31




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Welcome on math.stackexchange!
          For the geometric series there is not only a formula for $sum_n=0^infty q^n$ but also for the finite sums, namely
          $$
          sum_n=0^k q^n=frac1-q^k+11-q
          $$

          and this holds for $q not =1$.
          With this formula you can then calculate the year.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks, that's exactly the formula I was looking for.
            $endgroup$
            – John Proctor
            Apr 1 at 19:06










          • $begingroup$
            You're welcome.
            $endgroup$
            – Jonas Lenz
            Apr 1 at 19:07











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171005%2fgeometric-series-to-solve-for-year-a-resource-will-be-depleted%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Welcome on math.stackexchange!
          For the geometric series there is not only a formula for $sum_n=0^infty q^n$ but also for the finite sums, namely
          $$
          sum_n=0^k q^n=frac1-q^k+11-q
          $$

          and this holds for $q not =1$.
          With this formula you can then calculate the year.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks, that's exactly the formula I was looking for.
            $endgroup$
            – John Proctor
            Apr 1 at 19:06










          • $begingroup$
            You're welcome.
            $endgroup$
            – Jonas Lenz
            Apr 1 at 19:07















          1












          $begingroup$

          Welcome on math.stackexchange!
          For the geometric series there is not only a formula for $sum_n=0^infty q^n$ but also for the finite sums, namely
          $$
          sum_n=0^k q^n=frac1-q^k+11-q
          $$

          and this holds for $q not =1$.
          With this formula you can then calculate the year.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks, that's exactly the formula I was looking for.
            $endgroup$
            – John Proctor
            Apr 1 at 19:06










          • $begingroup$
            You're welcome.
            $endgroup$
            – Jonas Lenz
            Apr 1 at 19:07













          1












          1








          1





          $begingroup$

          Welcome on math.stackexchange!
          For the geometric series there is not only a formula for $sum_n=0^infty q^n$ but also for the finite sums, namely
          $$
          sum_n=0^k q^n=frac1-q^k+11-q
          $$

          and this holds for $q not =1$.
          With this formula you can then calculate the year.






          share|cite|improve this answer









          $endgroup$



          Welcome on math.stackexchange!
          For the geometric series there is not only a formula for $sum_n=0^infty q^n$ but also for the finite sums, namely
          $$
          sum_n=0^k q^n=frac1-q^k+11-q
          $$

          and this holds for $q not =1$.
          With this formula you can then calculate the year.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 1 at 18:58









          Jonas LenzJonas Lenz

          694215




          694215











          • $begingroup$
            Thanks, that's exactly the formula I was looking for.
            $endgroup$
            – John Proctor
            Apr 1 at 19:06










          • $begingroup$
            You're welcome.
            $endgroup$
            – Jonas Lenz
            Apr 1 at 19:07
















          • $begingroup$
            Thanks, that's exactly the formula I was looking for.
            $endgroup$
            – John Proctor
            Apr 1 at 19:06










          • $begingroup$
            You're welcome.
            $endgroup$
            – Jonas Lenz
            Apr 1 at 19:07















          $begingroup$
          Thanks, that's exactly the formula I was looking for.
          $endgroup$
          – John Proctor
          Apr 1 at 19:06




          $begingroup$
          Thanks, that's exactly the formula I was looking for.
          $endgroup$
          – John Proctor
          Apr 1 at 19:06












          $begingroup$
          You're welcome.
          $endgroup$
          – Jonas Lenz
          Apr 1 at 19:07




          $begingroup$
          You're welcome.
          $endgroup$
          – Jonas Lenz
          Apr 1 at 19:07

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171005%2fgeometric-series-to-solve-for-year-a-resource-will-be-depleted%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu