Determine the value, when defined The Next CEO of Stack OverflowHow can calculate this limit?Finding the value of one-sided limits and greatest integer function.Find the limit $lim_ nrightarrow infty fracleftlfloorfrac3n10rightrfloorn$What is the value of $lim _xto 0leftlfloorfractan x sin xx^2rightrfloor$Finding a delta for the greatest integer function given an epsilon = 1/2If $lfloorcdotrfloor$ denotes the greatest integer function $ninmathbb N$, what is $lim_xto 0leftlfloorfracnsin(x) x rightrfloor$?Find the value of $lim_xto 0 fracsinxx$Can Greatest integer function and limit be InterchangedEvaluate $ lim_x to -0.5^- leftlfloorfrac1x leftlfloor frac-1x rightrfloorrightrfloor$Let $x>0$ , $lfloor xrfloor$ denotes the greatest integer less than or equal to $x$. Then find limit

Can you replace a racial trait cantrip when leveling up?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

What happens if you roll doubles 3 times then land on "Go to jail?"

Why has the US not been more assertive in confronting Russia in recent years?

How to safely derail a train during transit?

What happened in Rome, when the western empire "fell"?

MessageLevel in QGIS3

Real integral using residue theorem - why doesn't this work?

Make solar eclipses exceedingly rare, but still have new moons

Complex fractions

How did the Bene Gesserit know how to make a Kwisatz Haderach?

Inappropriate reference requests from Journal reviewers

Are there any limitations on attacking while grappling?

Unreliable Magic - Is it worth it?

How does the Z80 determine which peripheral sent an interrupt?

What flight has the highest ratio of time difference to flight time?

What benefits would be gained by using human laborers instead of drones in deep sea mining?

What is the result of assigning to std::vector<T>::begin()?

Written every which way

What was the first Unix version to run on a microcomputer?

Is "for causing autism in X" grammatical?

How do we know the LHC results are robust?

Multiple labels for a single equation

Why do professional authors make "consistency" mistakes? And how to avoid them?



Determine the value, when defined



The Next CEO of Stack OverflowHow can calculate this limit?Finding the value of one-sided limits and greatest integer function.Find the limit $lim_ nrightarrow infty fracleftlfloorfrac3n10rightrfloorn$What is the value of $lim _xto 0leftlfloorfractan x sin xx^2rightrfloor$Finding a delta for the greatest integer function given an epsilon = 1/2If $lfloorcdotrfloor$ denotes the greatest integer function $ninmathbb N$, what is $lim_xto 0leftlfloorfracnsin(x) x rightrfloor$?Find the value of $lim_xto 0 fracsinxx$Can Greatest integer function and limit be InterchangedEvaluate $ lim_x to -0.5^- leftlfloorfrac1x leftlfloor frac-1x rightrfloorrightrfloor$Let $x>0$ , $lfloor xrfloor$ denotes the greatest integer less than or equal to $x$. Then find limit










0












$begingroup$


Determine the value, when defined, of $$lim_xtoinfty frac1x^2-lfloor xrfloor$$ where $lfloor xrfloor$ is the greatest integer.



I know $lim_xtoinfty lfloor xrfloor = infty$ and $lim_xtoinfty x^2$=$infty$ but how do I combine them in order to get $$lim_xtoinfty frac1x^2-[x]$$










share|cite|improve this question











$endgroup$











  • $begingroup$
    What do you mean by $[x]$?
    $endgroup$
    – copper.hat
    2 days ago










  • $begingroup$
    $lim_xtoinfty lfloor xrfloor =infty,$ not $-infty.$
    $endgroup$
    – Thomas Andrews
    2 days ago










  • $begingroup$
    copper.hat greatest integer
    $endgroup$
    – user597188
    2 days ago















0












$begingroup$


Determine the value, when defined, of $$lim_xtoinfty frac1x^2-lfloor xrfloor$$ where $lfloor xrfloor$ is the greatest integer.



I know $lim_xtoinfty lfloor xrfloor = infty$ and $lim_xtoinfty x^2$=$infty$ but how do I combine them in order to get $$lim_xtoinfty frac1x^2-[x]$$










share|cite|improve this question











$endgroup$











  • $begingroup$
    What do you mean by $[x]$?
    $endgroup$
    – copper.hat
    2 days ago










  • $begingroup$
    $lim_xtoinfty lfloor xrfloor =infty,$ not $-infty.$
    $endgroup$
    – Thomas Andrews
    2 days ago










  • $begingroup$
    copper.hat greatest integer
    $endgroup$
    – user597188
    2 days ago













0












0








0





$begingroup$


Determine the value, when defined, of $$lim_xtoinfty frac1x^2-lfloor xrfloor$$ where $lfloor xrfloor$ is the greatest integer.



I know $lim_xtoinfty lfloor xrfloor = infty$ and $lim_xtoinfty x^2$=$infty$ but how do I combine them in order to get $$lim_xtoinfty frac1x^2-[x]$$










share|cite|improve this question











$endgroup$




Determine the value, when defined, of $$lim_xtoinfty frac1x^2-lfloor xrfloor$$ where $lfloor xrfloor$ is the greatest integer.



I know $lim_xtoinfty lfloor xrfloor = infty$ and $lim_xtoinfty x^2$=$infty$ but how do I combine them in order to get $$lim_xtoinfty frac1x^2-[x]$$







limits analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago







user597188

















asked 2 days ago









user597188user597188

235




235











  • $begingroup$
    What do you mean by $[x]$?
    $endgroup$
    – copper.hat
    2 days ago










  • $begingroup$
    $lim_xtoinfty lfloor xrfloor =infty,$ not $-infty.$
    $endgroup$
    – Thomas Andrews
    2 days ago










  • $begingroup$
    copper.hat greatest integer
    $endgroup$
    – user597188
    2 days ago
















  • $begingroup$
    What do you mean by $[x]$?
    $endgroup$
    – copper.hat
    2 days ago










  • $begingroup$
    $lim_xtoinfty lfloor xrfloor =infty,$ not $-infty.$
    $endgroup$
    – Thomas Andrews
    2 days ago










  • $begingroup$
    copper.hat greatest integer
    $endgroup$
    – user597188
    2 days ago















$begingroup$
What do you mean by $[x]$?
$endgroup$
– copper.hat
2 days ago




$begingroup$
What do you mean by $[x]$?
$endgroup$
– copper.hat
2 days ago












$begingroup$
$lim_xtoinfty lfloor xrfloor =infty,$ not $-infty.$
$endgroup$
– Thomas Andrews
2 days ago




$begingroup$
$lim_xtoinfty lfloor xrfloor =infty,$ not $-infty.$
$endgroup$
– Thomas Andrews
2 days ago












$begingroup$
copper.hat greatest integer
$endgroup$
– user597188
2 days ago




$begingroup$
copper.hat greatest integer
$endgroup$
– user597188
2 days ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Notice that $ x-1 leq [x]leq x$ so:



$$lim_xto inftyfrac1x^2-x+1leqlim_xto infty frac1x^2-[x]leq lim_xto infty frac1x^2-x$$



So:



$$0leqlim_xto infty frac1x^2-[x]leq 0$$



And:
$$lim_xto infty frac1x^2-[x]=0$$



:)






share|cite|improve this answer








New contributor




Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    1












    $begingroup$

    We always have $lfloor xrfloorle x$.
    For $x ge 2$ we have $x^2 over 2 ge x$.



    Hence, if $x ge 2$, we have $x^2-lfloor xrfloor ge x^2 -x ge x^2 over 2$ and
    so
    $1 over x^2-lfloor xrfloor le 2 over x^2$.






    share|cite|improve this answer











    $endgroup$




















      0












      $begingroup$

      Is in not obvious that $x^2$ grows proportionally faster than $[x]$ so $x^2 - [x]to infty$?



      To verify:



      $x ge [x] > 0$ so $x^2 ge [x]^2$ and $frac 1 x^2 - [x] le frac 1[x]^2 - [x] = frac 1[x]([x] - 1)< frac 1([x]-1)^2to 0$.



      To formalize:



      If $epsilon > 0$ and we want $[x]- 1 > sqrtfrac 1epsilon$, which we can get if we choose $x > lceil sqrtfrac 1epsilon rceil + 1=N$.



      Now if $x > N =lceil sqrtfrac 1epsilon rceil + 1$ then $[x] ge lceil sqrtfrac 1epsilon rceil + 1 ge sqrtfrac 1epsilon + 1$



      $[x]- 1 ge sqrtfrac 1 epsilon$



      $x^2 - [x]>[x]^2 - [x]=[x]([x]- 1)>([x]-1)^2 ge frac 1epsilon$



      $frac 1x^2 -[x] < epsilon$.



      So $limlimits_xto infty frac 1x^2 -[x] = infty$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164688%2fdetermine-the-value-when-defined%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        Notice that $ x-1 leq [x]leq x$ so:



        $$lim_xto inftyfrac1x^2-x+1leqlim_xto infty frac1x^2-[x]leq lim_xto infty frac1x^2-x$$



        So:



        $$0leqlim_xto infty frac1x^2-[x]leq 0$$



        And:
        $$lim_xto infty frac1x^2-[x]=0$$



        :)






        share|cite|improve this answer








        New contributor




        Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$

















          3












          $begingroup$

          Notice that $ x-1 leq [x]leq x$ so:



          $$lim_xto inftyfrac1x^2-x+1leqlim_xto infty frac1x^2-[x]leq lim_xto infty frac1x^2-x$$



          So:



          $$0leqlim_xto infty frac1x^2-[x]leq 0$$



          And:
          $$lim_xto infty frac1x^2-[x]=0$$



          :)






          share|cite|improve this answer








          New contributor




          Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$















            3












            3








            3





            $begingroup$

            Notice that $ x-1 leq [x]leq x$ so:



            $$lim_xto inftyfrac1x^2-x+1leqlim_xto infty frac1x^2-[x]leq lim_xto infty frac1x^2-x$$



            So:



            $$0leqlim_xto infty frac1x^2-[x]leq 0$$



            And:
            $$lim_xto infty frac1x^2-[x]=0$$



            :)






            share|cite|improve this answer








            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$



            Notice that $ x-1 leq [x]leq x$ so:



            $$lim_xto inftyfrac1x^2-x+1leqlim_xto infty frac1x^2-[x]leq lim_xto infty frac1x^2-x$$



            So:



            $$0leqlim_xto infty frac1x^2-[x]leq 0$$



            And:
            $$lim_xto infty frac1x^2-[x]=0$$



            :)







            share|cite|improve this answer








            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 2 days ago









            EurekaEureka

            423112




            423112




            New contributor




            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            Eureka is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





















                1












                $begingroup$

                We always have $lfloor xrfloorle x$.
                For $x ge 2$ we have $x^2 over 2 ge x$.



                Hence, if $x ge 2$, we have $x^2-lfloor xrfloor ge x^2 -x ge x^2 over 2$ and
                so
                $1 over x^2-lfloor xrfloor le 2 over x^2$.






                share|cite|improve this answer











                $endgroup$

















                  1












                  $begingroup$

                  We always have $lfloor xrfloorle x$.
                  For $x ge 2$ we have $x^2 over 2 ge x$.



                  Hence, if $x ge 2$, we have $x^2-lfloor xrfloor ge x^2 -x ge x^2 over 2$ and
                  so
                  $1 over x^2-lfloor xrfloor le 2 over x^2$.






                  share|cite|improve this answer











                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    We always have $lfloor xrfloorle x$.
                    For $x ge 2$ we have $x^2 over 2 ge x$.



                    Hence, if $x ge 2$, we have $x^2-lfloor xrfloor ge x^2 -x ge x^2 over 2$ and
                    so
                    $1 over x^2-lfloor xrfloor le 2 over x^2$.






                    share|cite|improve this answer











                    $endgroup$



                    We always have $lfloor xrfloorle x$.
                    For $x ge 2$ we have $x^2 over 2 ge x$.



                    Hence, if $x ge 2$, we have $x^2-lfloor xrfloor ge x^2 -x ge x^2 over 2$ and
                    so
                    $1 over x^2-lfloor xrfloor le 2 over x^2$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 2 days ago

























                    answered 2 days ago









                    copper.hatcopper.hat

                    128k559161




                    128k559161





















                        0












                        $begingroup$

                        Is in not obvious that $x^2$ grows proportionally faster than $[x]$ so $x^2 - [x]to infty$?



                        To verify:



                        $x ge [x] > 0$ so $x^2 ge [x]^2$ and $frac 1 x^2 - [x] le frac 1[x]^2 - [x] = frac 1[x]([x] - 1)< frac 1([x]-1)^2to 0$.



                        To formalize:



                        If $epsilon > 0$ and we want $[x]- 1 > sqrtfrac 1epsilon$, which we can get if we choose $x > lceil sqrtfrac 1epsilon rceil + 1=N$.



                        Now if $x > N =lceil sqrtfrac 1epsilon rceil + 1$ then $[x] ge lceil sqrtfrac 1epsilon rceil + 1 ge sqrtfrac 1epsilon + 1$



                        $[x]- 1 ge sqrtfrac 1 epsilon$



                        $x^2 - [x]>[x]^2 - [x]=[x]([x]- 1)>([x]-1)^2 ge frac 1epsilon$



                        $frac 1x^2 -[x] < epsilon$.



                        So $limlimits_xto infty frac 1x^2 -[x] = infty$.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Is in not obvious that $x^2$ grows proportionally faster than $[x]$ so $x^2 - [x]to infty$?



                          To verify:



                          $x ge [x] > 0$ so $x^2 ge [x]^2$ and $frac 1 x^2 - [x] le frac 1[x]^2 - [x] = frac 1[x]([x] - 1)< frac 1([x]-1)^2to 0$.



                          To formalize:



                          If $epsilon > 0$ and we want $[x]- 1 > sqrtfrac 1epsilon$, which we can get if we choose $x > lceil sqrtfrac 1epsilon rceil + 1=N$.



                          Now if $x > N =lceil sqrtfrac 1epsilon rceil + 1$ then $[x] ge lceil sqrtfrac 1epsilon rceil + 1 ge sqrtfrac 1epsilon + 1$



                          $[x]- 1 ge sqrtfrac 1 epsilon$



                          $x^2 - [x]>[x]^2 - [x]=[x]([x]- 1)>([x]-1)^2 ge frac 1epsilon$



                          $frac 1x^2 -[x] < epsilon$.



                          So $limlimits_xto infty frac 1x^2 -[x] = infty$.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Is in not obvious that $x^2$ grows proportionally faster than $[x]$ so $x^2 - [x]to infty$?



                            To verify:



                            $x ge [x] > 0$ so $x^2 ge [x]^2$ and $frac 1 x^2 - [x] le frac 1[x]^2 - [x] = frac 1[x]([x] - 1)< frac 1([x]-1)^2to 0$.



                            To formalize:



                            If $epsilon > 0$ and we want $[x]- 1 > sqrtfrac 1epsilon$, which we can get if we choose $x > lceil sqrtfrac 1epsilon rceil + 1=N$.



                            Now if $x > N =lceil sqrtfrac 1epsilon rceil + 1$ then $[x] ge lceil sqrtfrac 1epsilon rceil + 1 ge sqrtfrac 1epsilon + 1$



                            $[x]- 1 ge sqrtfrac 1 epsilon$



                            $x^2 - [x]>[x]^2 - [x]=[x]([x]- 1)>([x]-1)^2 ge frac 1epsilon$



                            $frac 1x^2 -[x] < epsilon$.



                            So $limlimits_xto infty frac 1x^2 -[x] = infty$.






                            share|cite|improve this answer









                            $endgroup$



                            Is in not obvious that $x^2$ grows proportionally faster than $[x]$ so $x^2 - [x]to infty$?



                            To verify:



                            $x ge [x] > 0$ so $x^2 ge [x]^2$ and $frac 1 x^2 - [x] le frac 1[x]^2 - [x] = frac 1[x]([x] - 1)< frac 1([x]-1)^2to 0$.



                            To formalize:



                            If $epsilon > 0$ and we want $[x]- 1 > sqrtfrac 1epsilon$, which we can get if we choose $x > lceil sqrtfrac 1epsilon rceil + 1=N$.



                            Now if $x > N =lceil sqrtfrac 1epsilon rceil + 1$ then $[x] ge lceil sqrtfrac 1epsilon rceil + 1 ge sqrtfrac 1epsilon + 1$



                            $[x]- 1 ge sqrtfrac 1 epsilon$



                            $x^2 - [x]>[x]^2 - [x]=[x]([x]- 1)>([x]-1)^2 ge frac 1epsilon$



                            $frac 1x^2 -[x] < epsilon$.



                            So $limlimits_xto infty frac 1x^2 -[x] = infty$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 days ago









                            fleabloodfleablood

                            73.6k22891




                            73.6k22891



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164688%2fdetermine-the-value-when-defined%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                                Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε