Compute $sumlimits_j = 0^m - 1 left(c_j + 1right)lnleft(c_j + 1right)$ where $c_j = cosleft(fracpi2mleft(1 + 2jright) right)$ The Next CEO of Stack OverflowAn arctan series with a parameter $sum_n=1^infty arctan left(frac2a^2n^2right)$Evaluating $int_0^1 fracx arctan x log left( 1-x^2right)1+x^2dx$Improper Integral $int_0^1left(leftfrac1xright-frac12right)fraclog(x)xdx$Derive $log(a+b)=log(a)-2logleft(cosleft(arctanleft(sqrtfracbaright)right)right)$Is there any simple method to evaluate this integral $int_0^2mpi} frac1{sin^4(x)+cos^4(x)d x?$How do I evaluate $lim_n rightarrow inftysum_k=1^nlogleft ( 1+frackn^2 right )$?On the summation $sum limits_n=1^infty arctan left ( frac1n^3+n^2+n+1 right )$Absolute convergence of $sumlimits_nleft( log (1-fraczn)^n^k + sumlimits_m=1^k+1log e^n^k-mz^m/m right)$?Solving a set of equations containing sums of logarithmsMethods to solve $int_0^infty fraccosleft(kx^nright)x^n + a:dx$

Grabbing quick drinks

What is the purpose of the Evocation wizard's Potent Cantrip feature?

How does the Z80 determine which peripheral sent an interrupt?

What does "Its cash flow is deeply negative" mean?

What benefits would be gained by using human laborers instead of drones in deep sea mining?

How did the Bene Gesserit know how to make a Kwisatz Haderach?

What can we do to stop prior company from asking us questions?

Rotate a column

Is there a way to save my career from absolute disaster?

How do I reset passwords on multiple websites easily?

Geometry problem - areas of triangles (contest math)

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Why didn't Khan get resurrected in the Genesis Explosion?

Solidity! Invalid implicit conversion from string memory to bytes memory requested

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

Novel about a guy who is possessed by the divine essence and the world ends?

WOW air has ceased operation, can I get my tickets refunded?

Unreliable Magic - Is it worth it?

Why does the UK parliament need a vote on the political declaration?

Which kind of appliances can one connect to electric sockets located in an airplane's toilet?

What was the first Unix version to run on a microcomputer?

In excess I'm lethal

Why am I allowed to create multiple unique pointers from a single object?



Compute $sumlimits_j = 0^m - 1 left(c_j + 1right)lnleft(c_j + 1right)$ where $c_j = cosleft(fracpi2mleft(1 + 2jright) right)$



The Next CEO of Stack OverflowAn arctan series with a parameter $sum_n=1^infty arctan left(frac2a^2n^2right)$Evaluating $int_0^1 fracx arctan x log left( 1-x^2right)1+x^2dx$Improper Integral $int_0^1left(leftfrac1xright-frac12right)fraclog(x)xdx$Derive $log(a+b)=log(a)-2logleft(cosleft(arctanleft(sqrtfracbaright)right)right)$Is there any simple method to evaluate this integral $int_0^2mpi frac1sin^4(x)+cos^4(x)d x?$How do I evaluate $lim_n rightarrow inftysum_k=1^nlogleft ( 1+frackn^2 right )$?On the summation $sum limits_n=1^infty arctan left ( frac1n^3+n^2+n+1 right )$Absolute convergence of $sumlimits_nleft( log (1-fraczn)^n^k + sumlimits_m=1^k+1log e^n^k-mz^m/m right)$?Solving a set of equations containing sums of logarithmsMethods to solve $int_0^infty fraccosleft(kx^nright)x^n + a:dx$










9












$begingroup$


As part of solving:



beginequation
I_m = int_0^1 lnleft(1 + x^2mright):dx.
endequation

where $m in mathbbN$. I found an unresolved component that I'm unsure how to start:



beginequation
G_m = sum_j = 0^m - 1 left(c_j + 1right)lnleft(c_j + 1right),
endequation



where $c_j = cosleft(fracpi2mleft(1 + 2jright) right)$



I'm just looking for a starting point. Any tips would be greatly appreciated.



By the way, I was able to show (and this was part of the solution too) :



beginequation
sum_j = 0^m - 1 c_j = 0
endequation



Edit: For those that may be interested. In collaboration with clathratus, we found that for $n > 1$



beginequation
int_0^1 frac1t^n + 1:dt = frac1nleft[fracpisinleft(fracpin right)- Bleft(1 - frac1n, frac1n, frac12right)right]
endequation



Or for any positive upper bound $x$:
beginalign
I_n(x) &= int_0^x frac1t^n + 1:dt = frac1nleft[Gammaleft(1 - frac1n right)Gammaleft(frac1n right)- Bleft(1 - frac1n, frac1n, frac1x^n + 1right)right]
endalign



Here though, I was curious to investigate when $n$ was an even integer. This is my work:



Here we will consider $r = 2m$ where $m in mathbbN$. In doing so, we observe that the roots of the function are $m$ pairs of complex roots $(z, c(z))$ where $c(z)$ is the conjugate of $z$. To verify this:



beginalign
x^2m + 1 = 0 rightarrow x^2m = e^pi i
endalign



By De Moivre's formula, we observe that:



beginalign
x = expleft(fracpi + 2pi j2m i right) mbox for j = 0dots 2m - 1,
endalign



which we can express as the set



beginalign
S &= Bigg expleft(fracpi + 2pi cdot 02m i right) , :expleft(fracpi + 2pi cdot 12m i right),dots,:expleft(fracpi + 2pi cdot (2m - 2)2m i right)\
&qquad:expleft(fracpi + 2pi cdot (2m - 1)2m i right)Bigg,
endalign



which can be expressed as the set of $2$-tuples



beginalign
S &= left left( expleft(fracpi + 2pi j2m i right) , :expleft(fracpi + 2pi(2m - 1 - j )2m i right)right): bigg\
& = left (z_j, cleft(z_jright):
endalign



From here, we can factor $x^2m + 1$ into the form



beginalign
x^2m + 1 &= prod_r in S left(x + r_jright)left(x + c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + left(r_j + c(r_j)right)x + r_j c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + 2Releft(r_jright)x + left|r_j right|^2right)
endalign



For our case here $left|r_j right|^2 = 1$ and $Releft(r_jright) = cosleft(fracpi + 2pi j2m right)= cosleft(fracpi2mleft(1 + 2jright)right) = c_j$



beginalign
int_0^1 logleft( x^2m + 1right):dx &= int_0^1 logleft(prod_r in S left(x^2 + 2c_jx+ left|r_j right|^2right)right)\
&= sum_j = 0^m - 1 int_0^1 logleft(x^2 + 2c_jx + 1 right)\
&= sum_j = 0^m - 1 left[2sqrt1 - c_j^2arctanleft(fracx + c_jsqrt1 - c_j^2right) + left(x + c_jright)logleft(x^2 + 2c_jx + 1right) - 2x right]_0^1 \
&= sum_j = 0^m - 1 left[ 2sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)c_j + left(log(2) - 2right) + left(c_j + 1right)logleft(c_j + 1right) right] \
&= 2sum_j = 0^m - 1sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign



Thus,



beginalign
int_0^1 logleft( x^2m + 1right):dx &=sum_j = 0^m - 1c_jsinleft(fracpi2mleft(1 + 2jright)right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign










share|cite|improve this question











$endgroup$





This question had a bounty worth +500
reputation from Community that ended ended at 2019-03-29 11:41:44Z">18 hours ago. Grace period ends in 5 hours


One or more of the answers is exemplary and worthy of an additional bounty.















  • $begingroup$
    @Mason - Yes, thanks for the pickup, I will edit now
    $endgroup$
    – user150203
    Dec 27 '18 at 4:46










  • $begingroup$
    And $G_n$ should be $G_m$? Sorry. I don't have a lot to add to this question except catching pedantic typos... Here's the closed forms for $I_0,I_1,I_2$. Does $I_m$ have a nice closed form? And is it easy to see how $I_m$ and $G_m$ are connected?
    $endgroup$
    – Mason
    Dec 27 '18 at 4:58











  • $begingroup$
    @Mason - Yes, sorry, I'm not on my game at the moment. I will correct. Thanks for the pickup. Have been trying to find the relationship through brute force examination (at present) and haven't been able to find anything.
    $endgroup$
    – user150203
    Dec 27 '18 at 5:02






  • 1




    $begingroup$
    Thanks for the shout-out David ;) I'll try to answer the question
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:08






  • 1




    $begingroup$
    @clathratus - Thank you for posting the question and your work on it. I've been fascinated with the question since your initial solution (the same that Claude) came to.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:13















9












$begingroup$


As part of solving:



beginequation
I_m = int_0^1 lnleft(1 + x^2mright):dx.
endequation

where $m in mathbbN$. I found an unresolved component that I'm unsure how to start:



beginequation
G_m = sum_j = 0^m - 1 left(c_j + 1right)lnleft(c_j + 1right),
endequation



where $c_j = cosleft(fracpi2mleft(1 + 2jright) right)$



I'm just looking for a starting point. Any tips would be greatly appreciated.



By the way, I was able to show (and this was part of the solution too) :



beginequation
sum_j = 0^m - 1 c_j = 0
endequation



Edit: For those that may be interested. In collaboration with clathratus, we found that for $n > 1$



beginequation
int_0^1 frac1t^n + 1:dt = frac1nleft[fracpisinleft(fracpin right)- Bleft(1 - frac1n, frac1n, frac12right)right]
endequation



Or for any positive upper bound $x$:
beginalign
I_n(x) &= int_0^x frac1t^n + 1:dt = frac1nleft[Gammaleft(1 - frac1n right)Gammaleft(frac1n right)- Bleft(1 - frac1n, frac1n, frac1x^n + 1right)right]
endalign



Here though, I was curious to investigate when $n$ was an even integer. This is my work:



Here we will consider $r = 2m$ where $m in mathbbN$. In doing so, we observe that the roots of the function are $m$ pairs of complex roots $(z, c(z))$ where $c(z)$ is the conjugate of $z$. To verify this:



beginalign
x^2m + 1 = 0 rightarrow x^2m = e^pi i
endalign



By De Moivre's formula, we observe that:



beginalign
x = expleft(fracpi + 2pi j2m i right) mbox for j = 0dots 2m - 1,
endalign



which we can express as the set



beginalign
S &= Bigg expleft(fracpi + 2pi cdot 02m i right) , :expleft(fracpi + 2pi cdot 12m i right),dots,:expleft(fracpi + 2pi cdot (2m - 2)2m i right)\
&qquad:expleft(fracpi + 2pi cdot (2m - 1)2m i right)Bigg,
endalign



which can be expressed as the set of $2$-tuples



beginalign
S &= left left( expleft(fracpi + 2pi j2m i right) , :expleft(fracpi + 2pi(2m - 1 - j )2m i right)right): bigg\
& = left (z_j, cleft(z_jright):
endalign



From here, we can factor $x^2m + 1$ into the form



beginalign
x^2m + 1 &= prod_r in S left(x + r_jright)left(x + c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + left(r_j + c(r_j)right)x + r_j c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + 2Releft(r_jright)x + left|r_j right|^2right)
endalign



For our case here $left|r_j right|^2 = 1$ and $Releft(r_jright) = cosleft(fracpi + 2pi j2m right)= cosleft(fracpi2mleft(1 + 2jright)right) = c_j$



beginalign
int_0^1 logleft( x^2m + 1right):dx &= int_0^1 logleft(prod_r in S left(x^2 + 2c_jx+ left|r_j right|^2right)right)\
&= sum_j = 0^m - 1 int_0^1 logleft(x^2 + 2c_jx + 1 right)\
&= sum_j = 0^m - 1 left[2sqrt1 - c_j^2arctanleft(fracx + c_jsqrt1 - c_j^2right) + left(x + c_jright)logleft(x^2 + 2c_jx + 1right) - 2x right]_0^1 \
&= sum_j = 0^m - 1 left[ 2sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)c_j + left(log(2) - 2right) + left(c_j + 1right)logleft(c_j + 1right) right] \
&= 2sum_j = 0^m - 1sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign



Thus,



beginalign
int_0^1 logleft( x^2m + 1right):dx &=sum_j = 0^m - 1c_jsinleft(fracpi2mleft(1 + 2jright)right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign










share|cite|improve this question











$endgroup$





This question had a bounty worth +500
reputation from Community that ended ended at 2019-03-29 11:41:44Z">18 hours ago. Grace period ends in 5 hours


One or more of the answers is exemplary and worthy of an additional bounty.















  • $begingroup$
    @Mason - Yes, thanks for the pickup, I will edit now
    $endgroup$
    – user150203
    Dec 27 '18 at 4:46










  • $begingroup$
    And $G_n$ should be $G_m$? Sorry. I don't have a lot to add to this question except catching pedantic typos... Here's the closed forms for $I_0,I_1,I_2$. Does $I_m$ have a nice closed form? And is it easy to see how $I_m$ and $G_m$ are connected?
    $endgroup$
    – Mason
    Dec 27 '18 at 4:58











  • $begingroup$
    @Mason - Yes, sorry, I'm not on my game at the moment. I will correct. Thanks for the pickup. Have been trying to find the relationship through brute force examination (at present) and haven't been able to find anything.
    $endgroup$
    – user150203
    Dec 27 '18 at 5:02






  • 1




    $begingroup$
    Thanks for the shout-out David ;) I'll try to answer the question
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:08






  • 1




    $begingroup$
    @clathratus - Thank you for posting the question and your work on it. I've been fascinated with the question since your initial solution (the same that Claude) came to.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:13













9












9








9


4



$begingroup$


As part of solving:



beginequation
I_m = int_0^1 lnleft(1 + x^2mright):dx.
endequation

where $m in mathbbN$. I found an unresolved component that I'm unsure how to start:



beginequation
G_m = sum_j = 0^m - 1 left(c_j + 1right)lnleft(c_j + 1right),
endequation



where $c_j = cosleft(fracpi2mleft(1 + 2jright) right)$



I'm just looking for a starting point. Any tips would be greatly appreciated.



By the way, I was able to show (and this was part of the solution too) :



beginequation
sum_j = 0^m - 1 c_j = 0
endequation



Edit: For those that may be interested. In collaboration with clathratus, we found that for $n > 1$



beginequation
int_0^1 frac1t^n + 1:dt = frac1nleft[fracpisinleft(fracpin right)- Bleft(1 - frac1n, frac1n, frac12right)right]
endequation



Or for any positive upper bound $x$:
beginalign
I_n(x) &= int_0^x frac1t^n + 1:dt = frac1nleft[Gammaleft(1 - frac1n right)Gammaleft(frac1n right)- Bleft(1 - frac1n, frac1n, frac1x^n + 1right)right]
endalign



Here though, I was curious to investigate when $n$ was an even integer. This is my work:



Here we will consider $r = 2m$ where $m in mathbbN$. In doing so, we observe that the roots of the function are $m$ pairs of complex roots $(z, c(z))$ where $c(z)$ is the conjugate of $z$. To verify this:



beginalign
x^2m + 1 = 0 rightarrow x^2m = e^pi i
endalign



By De Moivre's formula, we observe that:



beginalign
x = expleft(fracpi + 2pi j2m i right) mbox for j = 0dots 2m - 1,
endalign



which we can express as the set



beginalign
S &= Bigg expleft(fracpi + 2pi cdot 02m i right) , :expleft(fracpi + 2pi cdot 12m i right),dots,:expleft(fracpi + 2pi cdot (2m - 2)2m i right)\
&qquad:expleft(fracpi + 2pi cdot (2m - 1)2m i right)Bigg,
endalign



which can be expressed as the set of $2$-tuples



beginalign
S &= left left( expleft(fracpi + 2pi j2m i right) , :expleft(fracpi + 2pi(2m - 1 - j )2m i right)right): bigg\
& = left (z_j, cleft(z_jright):
endalign



From here, we can factor $x^2m + 1$ into the form



beginalign
x^2m + 1 &= prod_r in S left(x + r_jright)left(x + c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + left(r_j + c(r_j)right)x + r_j c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + 2Releft(r_jright)x + left|r_j right|^2right)
endalign



For our case here $left|r_j right|^2 = 1$ and $Releft(r_jright) = cosleft(fracpi + 2pi j2m right)= cosleft(fracpi2mleft(1 + 2jright)right) = c_j$



beginalign
int_0^1 logleft( x^2m + 1right):dx &= int_0^1 logleft(prod_r in S left(x^2 + 2c_jx+ left|r_j right|^2right)right)\
&= sum_j = 0^m - 1 int_0^1 logleft(x^2 + 2c_jx + 1 right)\
&= sum_j = 0^m - 1 left[2sqrt1 - c_j^2arctanleft(fracx + c_jsqrt1 - c_j^2right) + left(x + c_jright)logleft(x^2 + 2c_jx + 1right) - 2x right]_0^1 \
&= sum_j = 0^m - 1 left[ 2sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)c_j + left(log(2) - 2right) + left(c_j + 1right)logleft(c_j + 1right) right] \
&= 2sum_j = 0^m - 1sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign



Thus,



beginalign
int_0^1 logleft( x^2m + 1right):dx &=sum_j = 0^m - 1c_jsinleft(fracpi2mleft(1 + 2jright)right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign










share|cite|improve this question











$endgroup$




As part of solving:



beginequation
I_m = int_0^1 lnleft(1 + x^2mright):dx.
endequation

where $m in mathbbN$. I found an unresolved component that I'm unsure how to start:



beginequation
G_m = sum_j = 0^m - 1 left(c_j + 1right)lnleft(c_j + 1right),
endequation



where $c_j = cosleft(fracpi2mleft(1 + 2jright) right)$



I'm just looking for a starting point. Any tips would be greatly appreciated.



By the way, I was able to show (and this was part of the solution too) :



beginequation
sum_j = 0^m - 1 c_j = 0
endequation



Edit: For those that may be interested. In collaboration with clathratus, we found that for $n > 1$



beginequation
int_0^1 frac1t^n + 1:dt = frac1nleft[fracpisinleft(fracpin right)- Bleft(1 - frac1n, frac1n, frac12right)right]
endequation



Or for any positive upper bound $x$:
beginalign
I_n(x) &= int_0^x frac1t^n + 1:dt = frac1nleft[Gammaleft(1 - frac1n right)Gammaleft(frac1n right)- Bleft(1 - frac1n, frac1n, frac1x^n + 1right)right]
endalign



Here though, I was curious to investigate when $n$ was an even integer. This is my work:



Here we will consider $r = 2m$ where $m in mathbbN$. In doing so, we observe that the roots of the function are $m$ pairs of complex roots $(z, c(z))$ where $c(z)$ is the conjugate of $z$. To verify this:



beginalign
x^2m + 1 = 0 rightarrow x^2m = e^pi i
endalign



By De Moivre's formula, we observe that:



beginalign
x = expleft(fracpi + 2pi j2m i right) mbox for j = 0dots 2m - 1,
endalign



which we can express as the set



beginalign
S &= Bigg expleft(fracpi + 2pi cdot 02m i right) , :expleft(fracpi + 2pi cdot 12m i right),dots,:expleft(fracpi + 2pi cdot (2m - 2)2m i right)\
&qquad:expleft(fracpi + 2pi cdot (2m - 1)2m i right)Bigg,
endalign



which can be expressed as the set of $2$-tuples



beginalign
S &= left left( expleft(fracpi + 2pi j2m i right) , :expleft(fracpi + 2pi(2m - 1 - j )2m i right)right): bigg\
& = left (z_j, cleft(z_jright):
endalign



From here, we can factor $x^2m + 1$ into the form



beginalign
x^2m + 1 &= prod_r in S left(x + r_jright)left(x + c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + left(r_j + c(r_j)right)x + r_j c(r_j)right) \
&= prod_i = 0^m - 1 left(x^2 + 2Releft(r_jright)x + left|r_j right|^2right)
endalign



For our case here $left|r_j right|^2 = 1$ and $Releft(r_jright) = cosleft(fracpi + 2pi j2m right)= cosleft(fracpi2mleft(1 + 2jright)right) = c_j$



beginalign
int_0^1 logleft( x^2m + 1right):dx &= int_0^1 logleft(prod_r in S left(x^2 + 2c_jx+ left|r_j right|^2right)right)\
&= sum_j = 0^m - 1 int_0^1 logleft(x^2 + 2c_jx + 1 right)\
&= sum_j = 0^m - 1 left[2sqrt1 - c_j^2arctanleft(fracx + c_jsqrt1 - c_j^2right) + left(x + c_jright)logleft(x^2 + 2c_jx + 1right) - 2x right]_0^1 \
&= sum_j = 0^m - 1 left[ 2sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)c_j + left(log(2) - 2right) + left(c_j + 1right)logleft(c_j + 1right) right] \
&= 2sum_j = 0^m - 1sqrt1 - c_j^2arctanleft(sqrtfrac1 - c_j1 + c_j right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign



Thus,



beginalign
int_0^1 logleft( x^2m + 1right):dx &=sum_j = 0^m - 1c_jsinleft(fracpi2mleft(1 + 2jright)right) + log(2)sum_j = 0^m - 1 c_j + mleft(log(2) - 2right)\
&qquad+ sum_j = 0^m - 1left(c_j + 1right)logleft(c_j + 1right)
endalign







integration sequences-and-series definite-integrals logarithms trigonometric-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 11:02









Did

249k23226466




249k23226466










asked Dec 27 '18 at 4:44







user150203













This question had a bounty worth +500
reputation from Community that ended ended at 2019-03-29 11:41:44Z">18 hours ago. Grace period ends in 5 hours


One or more of the answers is exemplary and worthy of an additional bounty.








This question had a bounty worth +500
reputation from Community that ended ended at 2019-03-29 11:41:44Z">18 hours ago. Grace period ends in 5 hours


One or more of the answers is exemplary and worthy of an additional bounty.













  • $begingroup$
    @Mason - Yes, thanks for the pickup, I will edit now
    $endgroup$
    – user150203
    Dec 27 '18 at 4:46










  • $begingroup$
    And $G_n$ should be $G_m$? Sorry. I don't have a lot to add to this question except catching pedantic typos... Here's the closed forms for $I_0,I_1,I_2$. Does $I_m$ have a nice closed form? And is it easy to see how $I_m$ and $G_m$ are connected?
    $endgroup$
    – Mason
    Dec 27 '18 at 4:58











  • $begingroup$
    @Mason - Yes, sorry, I'm not on my game at the moment. I will correct. Thanks for the pickup. Have been trying to find the relationship through brute force examination (at present) and haven't been able to find anything.
    $endgroup$
    – user150203
    Dec 27 '18 at 5:02






  • 1




    $begingroup$
    Thanks for the shout-out David ;) I'll try to answer the question
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:08






  • 1




    $begingroup$
    @clathratus - Thank you for posting the question and your work on it. I've been fascinated with the question since your initial solution (the same that Claude) came to.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:13
















  • $begingroup$
    @Mason - Yes, thanks for the pickup, I will edit now
    $endgroup$
    – user150203
    Dec 27 '18 at 4:46










  • $begingroup$
    And $G_n$ should be $G_m$? Sorry. I don't have a lot to add to this question except catching pedantic typos... Here's the closed forms for $I_0,I_1,I_2$. Does $I_m$ have a nice closed form? And is it easy to see how $I_m$ and $G_m$ are connected?
    $endgroup$
    – Mason
    Dec 27 '18 at 4:58











  • $begingroup$
    @Mason - Yes, sorry, I'm not on my game at the moment. I will correct. Thanks for the pickup. Have been trying to find the relationship through brute force examination (at present) and haven't been able to find anything.
    $endgroup$
    – user150203
    Dec 27 '18 at 5:02






  • 1




    $begingroup$
    Thanks for the shout-out David ;) I'll try to answer the question
    $endgroup$
    – clathratus
    Dec 27 '18 at 9:08






  • 1




    $begingroup$
    @clathratus - Thank you for posting the question and your work on it. I've been fascinated with the question since your initial solution (the same that Claude) came to.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:13















$begingroup$
@Mason - Yes, thanks for the pickup, I will edit now
$endgroup$
– user150203
Dec 27 '18 at 4:46




$begingroup$
@Mason - Yes, thanks for the pickup, I will edit now
$endgroup$
– user150203
Dec 27 '18 at 4:46












$begingroup$
And $G_n$ should be $G_m$? Sorry. I don't have a lot to add to this question except catching pedantic typos... Here's the closed forms for $I_0,I_1,I_2$. Does $I_m$ have a nice closed form? And is it easy to see how $I_m$ and $G_m$ are connected?
$endgroup$
– Mason
Dec 27 '18 at 4:58





$begingroup$
And $G_n$ should be $G_m$? Sorry. I don't have a lot to add to this question except catching pedantic typos... Here's the closed forms for $I_0,I_1,I_2$. Does $I_m$ have a nice closed form? And is it easy to see how $I_m$ and $G_m$ are connected?
$endgroup$
– Mason
Dec 27 '18 at 4:58













$begingroup$
@Mason - Yes, sorry, I'm not on my game at the moment. I will correct. Thanks for the pickup. Have been trying to find the relationship through brute force examination (at present) and haven't been able to find anything.
$endgroup$
– user150203
Dec 27 '18 at 5:02




$begingroup$
@Mason - Yes, sorry, I'm not on my game at the moment. I will correct. Thanks for the pickup. Have been trying to find the relationship through brute force examination (at present) and haven't been able to find anything.
$endgroup$
– user150203
Dec 27 '18 at 5:02




1




1




$begingroup$
Thanks for the shout-out David ;) I'll try to answer the question
$endgroup$
– clathratus
Dec 27 '18 at 9:08




$begingroup$
Thanks for the shout-out David ;) I'll try to answer the question
$endgroup$
– clathratus
Dec 27 '18 at 9:08




1




1




$begingroup$
@clathratus - Thank you for posting the question and your work on it. I've been fascinated with the question since your initial solution (the same that Claude) came to.
$endgroup$
– user150203
Dec 27 '18 at 9:13




$begingroup$
@clathratus - Thank you for posting the question and your work on it. I've been fascinated with the question since your initial solution (the same that Claude) came to.
$endgroup$
– user150203
Dec 27 '18 at 9:13










4 Answers
4






active

oldest

votes


















6












$begingroup$

This does not answer the question as asked in the post.



Consider
$$J_m=int log(1+x^2m),dx$$ One integration by parts gives
$$J_m=x log left(1+x^2 mright)-2mint frac x^2 m+1-1x^2 m+1,dx=x log left(1+x^2 mright)-2mx+2mint fracdxx^2 m+1$$ and
$$int fracdxx^2 m+1=x , _2F_1left(1,frac12 m;1+frac12 m;-x^2 mright)$$ where appears the Gaussian or ordinary hypergeometric function.



So
$$K_m=int_0^a log(1+x^2m),dx=a log left(1+a^2 mright)-2ma+2ma , _2F_1left(1,frac12 m;1+frac12 m;-a^2 mright)$$ and, if $a=1$,
$$I_m=int_0^1 log(1+x^2m),dx= log left(2right)-2m+2m , _2F_1left(1,frac12 m;1+frac12 m;-1right)$$ which can write
$$I_m=log (2)-Phi left(-1,1,1+frac12 mright)$$
where appears the Lerch transcendent function.



Now, (this is something I never looked at), a few (ugly) expressions for $f_m=Phi left(-1,1,1+frac12 mright)$ before any simplification
$$f(1)=fracpi 2-2$$
$$f(2)=frac14 left(pi tan left(fracpi 8right)+pi cot left(fracpi
8right)-4 sqrt2 log left(sin left(fracpi 8right)right)+4
sqrt2 log left(cos left(fracpi 8right)right)right)-4$$

$$f(3)=frac2 left(pi -sqrt3 log left(sqrt3-1right)+sqrt3 log
left(1+sqrt3right)right)left(sqrt3-1right)
left(1+sqrt3right)-6$$

$$f(4)=frac14 left(pi tan left(fracpi 16right)+pi cot left(fracpi
16right)-8 sin left(fracpi 8right) log left(sin left(frac3
pi 16right)right)+8 cos left(fracpi 8right) log left(cos
left(fracpi 16right)right)-8 cos left(fracpi 8right) log
left(sin left(fracpi 16right)right)+8 sin left(fracpi
8right) log left(cos left(frac3 pi 16right)right)right)-8$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
    $endgroup$
    – user150203
    Dec 27 '18 at 8:49










  • $begingroup$
    @DavidG. Your post is very interesting. I need to spend more time with it !
    $endgroup$
    – Claude Leibovici
    Dec 27 '18 at 8:54










  • $begingroup$
    Please do! I look forward to any comments you may have. Thanks again for your post.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:48










  • $begingroup$
    Mathematica calculates the same result
    $endgroup$
    – stocha
    Mar 22 at 19:11


















4












$begingroup$

$colorbrowntextbfPreliminary notes.$




Calculation of the required sum looks more complex task than of the
issue integral.



Approach with calculations of the sum via the inttegral allows to get close form both of the integral and the sum.




Denote
$$I_n=intlimits_0^1log(1+x^n)mathrm dx.tag1$$
Easy to see that the issue integral is $I_2m.$



$colorbrowntextbfClosed form of the integrals.$



The first step is the integration by parts:
$$I_n = xlog(1+x^n)biggr|_0^1-nint_0^1xdfracx^n-11+x^nmathrm dx,$$
$$I_n = log2 - n + nintlimits_0^1dfracmathrm dx1+x^n.tag2$$
(see also Claude Leibovici).



Then, the substitution
$$x=e^-ttag3$$
gives
$$J_n=intlimits_0^1dfracmathrm dx1+x^n=intlimits_0^inftydfrace^-t,mathrm dt1+e^-nt = sumlimits_k=0^infty(-1)^kintlimits_0^infty e^-(kn+1)t,mathrm dt=sumlimits_k=0^inftydfrac(-1)^kkn+1 ,$$
$$J_n = intlimits_0^1dfracmathrm dx1+x^n= dfrac12nleft(psi_0left(dfracn+12nright) - psi_0left(dfrac12nright)right),tag4$$
where $psi_0(x)$ is the polygamma function.



Using $(2),(4),$ easy to get the expression for the OP integral in the form of
$$boxedI_2m = log2 - 2m +dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right).tag5$$



$colorbrowntextbfTesting of the solution.$



Solution $(4)$ can be expressed via the elementary functions for a lot of the given values of n.



Immediate calculations allow to check obtained expressions in the simple cases
beginalign
&J_1 = intlimits_0^1dfracmathrm dx1+x = log 2,\[4pt]
&J_2 = intlimits_0^1dfracmathrm dx1+x^2 = arctan 1 = dfracpi4,\[4pt]
&J_3 = intlimits_0^1dfracmathrm dx1+x^3
= dfrac16intlimits_0^1left(dfrac21+x - dfrac2x-11-x+x^2 + dfrac31-x+x^2right),mathrm dx\
&= left(dfrac13log(1+x) - dfrac16 log(1-x+x^2) + dfrac1sqrt3arctandfrac2x-1sqrt3right)bigg|_0^1
= dfracpi3sqrt3 + frac13 log2.\[4pt]
endalign

More hard cases are
beginalign
&J_4 = intlimits_0^1dfracmathrm dx1+x^4
= dfracsqrt28left(logdfracx^2 + sqrt2 x + 1x^2 - sqrt2 x + 1
- 2arctan(1-sqrt2x) + 2arctan(sqrt2x+1)right)bigg|_0^1\[4pt]
&= dfracsqrt28left(logdfrac(x^2 + sqrt2 x + 1)^21+x^4 + 2arctandfracxsqrt21-x^2right)bigg|_0^1
= dfracsqrt28(pi+log(3+2sqrt2)),\[4pt]
&J_4=dfrac18Bigg(dfrac12sqrtdfrac2-sqrt22+sqrt2pi+dfrac12sqrtdfrac2+sqrt22-sqrt2pi
-2sqrt2left(-log2+dfrac12log(2-sqrt2)right)\[4pt]
&+2sqrt2left(-log2+dfrac12log(2+sqrt2)right)Bigg)\[4pt]
&=dfrac18Bigg(dfracpi2left(tandfracpi8+cotdfracpi8right)
+sqrt2logdfrac2+sqrt22-sqrt2Bigg)
= dfracsqrt28(pi+log(3+2sqrt2)),
endalign

and $n>4.$



Numeric calculations of the issue integral $I_2m$ and its closed form $(5)$ also confirm the correctness of the closed form.



$colorbrowntextbfThe alternative approach.$



The alternative approach is considered in OP. Let us repeat it with some differences.



Polynomial factorization can be presented in the form of



beginalign
&1+x^2m = prodlimits_j=0^2m-1large left(x-e^frac2j+12mpi iright)
= prodlimits_j=0^m-1left(x^2-2xcosfrac2j+12mpi+1right),
endalign

so
beginalign
&I_2m = intlimits_0^1 ln(1+x^2m),mathrm dx
= sumlimits_j=0^m-1 T_j,quadtextwhere\[4pt]
&T_j = intlimits_0^1 lnleft(x^2-2xcosfrac2j+12mpi+1right),mathrm dx,\[4pt]
&T_j = xlnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1
- 2intlimits_0^1 dfracxleft(x-cosfrac2j+12mpiright)x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
& = lnleft(2-2cosfrac2j+12mpiright)
- 2-2intlimits_0^1 dfracxcosfrac2j+12mpi-1x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
& = lnleft(2-2cosfrac2j+12mpiright) - 2
- 2cosfrac2j+12mpi intlimits_0^1 dfracx-cosfrac2j+12mpix^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
& + 2intlimits_0^1 dfracsin^2frac2j+12mpileft(x-cosfrac2j+12mpiright)^2+sin^2frac2j+12mpi,mathrm dx\[4pt]
& = lnleft(2-2cosfrac2j+12mpiright) - 2
- cosfrac2j+12mpi lnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1\[4pt]
& + 2sinfrac2j+12mpi arctandfracx-cosfrac2j+12mpisinfrac2j+12mpibigg|_0^1\[4pt]
& = lnleft(2-2cosfrac2j+12mpiright) - 2
- cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
& + 2sinfrac2j+12mpi
left(arctandfrac1-cosfrac2j+12mpisinfrac2j+12mpi
+ arctandfraccosfrac2j+12mpisinfrac2j+12mpiright)\[4pt]
& = lnleft(2-2cosfrac2j+12mpiright) - 2
- cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
& + 2sinfrac2j+12mpi
arctandfracsinfrac2j+12mpi
sin^2frac2j+12mpi - left(1 - cosfrac2j+12mpiright)cosfrac2j+12mpi\[4pt]
& = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + 2sinfrac2j+12mpiarctancotfrac2j+14mpi,\[4pt]
&T_j = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + dfrac2(m-j)-12mpisinfrac2j+12mpi.
endalign

Taking in account that
beginalign
&sumlimits_j=0^m-1cosfrac2j+12mpi
= Re sumlimits_j=0^m-1e^frac2j+12mpi i
= Re large dfrac1-e^pi i1-e^fracpimie^fracpi2mi
=Redfrac isinfracpi2m = 0,\[4pt]
&sumlimits_j=0^m-1sinfrac2j+12mpi
= Im sumlimits_j=0^m-1e^frac2j+12mpi i
=Imdfracisinfracpi2m = dfrac1sinfracpi2m,\[4pt]
&sumlimits_j=0^m-1frac2j+12mpisinfrac2j+12mpi
= dfracpi2sinfracpi2m
endalign

(see also Wolfram Alpha calculations),



one can get
$$boxedI_2m = m(ln2-2) + dfracpi2cscfracpi2m
+ sumlimits_j=0^m-1left(1pmcosfrac2j+12mpiright)
logleft(1pmcosfrac2j+12mpiright).tag6$$



$colorbrowntextbfClosed form for the sum.$



From $(5)-(6)$ should
$$colorgreenboxedsumlimits_j=0^m-1left(1pm c_jright)
logleft(1pm c_jright)
= dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right) - (m-1)ln2 - dfracpi2cscfracpi2m
,tag7$$

where
$$c_j = cosfrac2j+12mpi.$$



Numeric calculations confirm the expression $(6)$ for the both variants of the sign "$pm$".



Also, numeric calculations of the issue sum and its closed form $(7)$ confirm the correctness of the closed form for the both variants of the sign "$pm$".






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Very nice presentation, already before the alternate approach (+1).
    $endgroup$
    – Markus Scheuer
    yesterday










  • $begingroup$
    @MarkusScheuer Thanks, you are welcome!
    $endgroup$
    – Yuri Negometyanov
    yesterday


















2












$begingroup$

I did it!



I actually have no idea whether or not this works, but this is how I did it.



$ninBbb N$



Define the sequence $r_k^(n)_k=1^k=n$ such that
$$x^n+1=prod_k=1^nbig(x-r^(n)_kbig)$$
We then know that $$r_k^(n)=expbigg[fracipin(2k-1)bigg]$$
Then we define
$$S_n=r_k^(n):kin[1,n]capBbb N$$
So we have that
$$frac1x^n+1=prod_rin S_nfrac1x-r=prod_k=1^nfrac1x-r_k^(n)$$
Then we assume that we can write
$$prod_rin S_nfrac1x-r=sum_rin S_nfracb(r)x-r$$
Multiplying both sides by $prod_ain S_n(x-a)$,
$$1=sum_rin S_nb(r)prod_ain S_n\ aneq r(x-a)$$
So for any $omegain S_n$,
$$1=b(omega)prod_ain S_n\ aneq omega(omega-a)$$
$$b(omega)=prod_ain S_n\ aneq omegafrac1omega-a$$
$$b(r_k^(n))=prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
So we know that
$$I_n=int_0^1fracmathrmdx1+x^n=sum_k=1^nb(r_k^(n))int_0^1fracmathrmdxx-r_k^(n)$$
$$I_n=sum_k=1^nb(r_k^(n))logbigg|fracr_k^(n)-1r_k^(n)bigg|$$
$$I_n=sum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
So we have
$$int_0^1log(1+x^n)mathrmdx=log2-n+nsum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
along with a plethora of other identities...






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
    $endgroup$
    – user150203
    Dec 31 '18 at 6:16










  • $begingroup$
    I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
    $endgroup$
    – user150203
    Dec 31 '18 at 9:47










  • $begingroup$
    Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
    $endgroup$
    – clathratus
    Dec 31 '18 at 20:28


















1












$begingroup$

Here's another, quicker, method (I also don't know if this one works)



Using the same $r_k^(n)$ as last time, we apply the $logprod_ia_i=sum_ilog a_i$ property to see that
$$log(1+x^n)=logprod_k=1^n(x-r_k^(n))=sum_k=1^nlog(x-r_k^(n))$$
So
$$I_n=int_0^1log(1+x^n)mathrm dx=sum_k=1^nint_0^1log(x-r_k^(n))mathrm dx$$
This last integral boils down to
$$beginalign
int_0^1log(x-a)mathrm dx=&alogfraca1+a+log(1-a)-1\
=&logfraca^a(1-a)e(1+a)^a
endalign$$

So
$$I_n=sum_rin S_nlogfracr^r(1-r)e(1+r)^r$$
And you know how I love product representations, so we again use $logprod_ia_i=sum_ilog a_i$ to see that
$$
I_n=logprod_rin S_nfracr^r(1-r)e(1+r)^r\
prod_rin S_nfracr^r(1-r)(1+r)^r=exp(n+I_n)
$$

Which I just think is really neat.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053596%2fcompute-sum-limits-j-0m-1-leftc-j-1-right-ln-leftc-j-1-right%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown
























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    This does not answer the question as asked in the post.



    Consider
    $$J_m=int log(1+x^2m),dx$$ One integration by parts gives
    $$J_m=x log left(1+x^2 mright)-2mint frac x^2 m+1-1x^2 m+1,dx=x log left(1+x^2 mright)-2mx+2mint fracdxx^2 m+1$$ and
    $$int fracdxx^2 m+1=x , _2F_1left(1,frac12 m;1+frac12 m;-x^2 mright)$$ where appears the Gaussian or ordinary hypergeometric function.



    So
    $$K_m=int_0^a log(1+x^2m),dx=a log left(1+a^2 mright)-2ma+2ma , _2F_1left(1,frac12 m;1+frac12 m;-a^2 mright)$$ and, if $a=1$,
    $$I_m=int_0^1 log(1+x^2m),dx= log left(2right)-2m+2m , _2F_1left(1,frac12 m;1+frac12 m;-1right)$$ which can write
    $$I_m=log (2)-Phi left(-1,1,1+frac12 mright)$$
    where appears the Lerch transcendent function.



    Now, (this is something I never looked at), a few (ugly) expressions for $f_m=Phi left(-1,1,1+frac12 mright)$ before any simplification
    $$f(1)=fracpi 2-2$$
    $$f(2)=frac14 left(pi tan left(fracpi 8right)+pi cot left(fracpi
    8right)-4 sqrt2 log left(sin left(fracpi 8right)right)+4
    sqrt2 log left(cos left(fracpi 8right)right)right)-4$$

    $$f(3)=frac2 left(pi -sqrt3 log left(sqrt3-1right)+sqrt3 log
    left(1+sqrt3right)right)left(sqrt3-1right)
    left(1+sqrt3right)-6$$

    $$f(4)=frac14 left(pi tan left(fracpi 16right)+pi cot left(fracpi
    16right)-8 sin left(fracpi 8right) log left(sin left(frac3
    pi 16right)right)+8 cos left(fracpi 8right) log left(cos
    left(fracpi 16right)right)-8 cos left(fracpi 8right) log
    left(sin left(fracpi 16right)right)+8 sin left(fracpi
    8right) log left(cos left(frac3 pi 16right)right)right)-8$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
      $endgroup$
      – user150203
      Dec 27 '18 at 8:49










    • $begingroup$
      @DavidG. Your post is very interesting. I need to spend more time with it !
      $endgroup$
      – Claude Leibovici
      Dec 27 '18 at 8:54










    • $begingroup$
      Please do! I look forward to any comments you may have. Thanks again for your post.
      $endgroup$
      – user150203
      Dec 27 '18 at 9:48










    • $begingroup$
      Mathematica calculates the same result
      $endgroup$
      – stocha
      Mar 22 at 19:11















    6












    $begingroup$

    This does not answer the question as asked in the post.



    Consider
    $$J_m=int log(1+x^2m),dx$$ One integration by parts gives
    $$J_m=x log left(1+x^2 mright)-2mint frac x^2 m+1-1x^2 m+1,dx=x log left(1+x^2 mright)-2mx+2mint fracdxx^2 m+1$$ and
    $$int fracdxx^2 m+1=x , _2F_1left(1,frac12 m;1+frac12 m;-x^2 mright)$$ where appears the Gaussian or ordinary hypergeometric function.



    So
    $$K_m=int_0^a log(1+x^2m),dx=a log left(1+a^2 mright)-2ma+2ma , _2F_1left(1,frac12 m;1+frac12 m;-a^2 mright)$$ and, if $a=1$,
    $$I_m=int_0^1 log(1+x^2m),dx= log left(2right)-2m+2m , _2F_1left(1,frac12 m;1+frac12 m;-1right)$$ which can write
    $$I_m=log (2)-Phi left(-1,1,1+frac12 mright)$$
    where appears the Lerch transcendent function.



    Now, (this is something I never looked at), a few (ugly) expressions for $f_m=Phi left(-1,1,1+frac12 mright)$ before any simplification
    $$f(1)=fracpi 2-2$$
    $$f(2)=frac14 left(pi tan left(fracpi 8right)+pi cot left(fracpi
    8right)-4 sqrt2 log left(sin left(fracpi 8right)right)+4
    sqrt2 log left(cos left(fracpi 8right)right)right)-4$$

    $$f(3)=frac2 left(pi -sqrt3 log left(sqrt3-1right)+sqrt3 log
    left(1+sqrt3right)right)left(sqrt3-1right)
    left(1+sqrt3right)-6$$

    $$f(4)=frac14 left(pi tan left(fracpi 16right)+pi cot left(fracpi
    16right)-8 sin left(fracpi 8right) log left(sin left(frac3
    pi 16right)right)+8 cos left(fracpi 8right) log left(cos
    left(fracpi 16right)right)-8 cos left(fracpi 8right) log
    left(sin left(fracpi 16right)right)+8 sin left(fracpi
    8right) log left(cos left(frac3 pi 16right)right)right)-8$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
      $endgroup$
      – user150203
      Dec 27 '18 at 8:49










    • $begingroup$
      @DavidG. Your post is very interesting. I need to spend more time with it !
      $endgroup$
      – Claude Leibovici
      Dec 27 '18 at 8:54










    • $begingroup$
      Please do! I look forward to any comments you may have. Thanks again for your post.
      $endgroup$
      – user150203
      Dec 27 '18 at 9:48










    • $begingroup$
      Mathematica calculates the same result
      $endgroup$
      – stocha
      Mar 22 at 19:11













    6












    6








    6





    $begingroup$

    This does not answer the question as asked in the post.



    Consider
    $$J_m=int log(1+x^2m),dx$$ One integration by parts gives
    $$J_m=x log left(1+x^2 mright)-2mint frac x^2 m+1-1x^2 m+1,dx=x log left(1+x^2 mright)-2mx+2mint fracdxx^2 m+1$$ and
    $$int fracdxx^2 m+1=x , _2F_1left(1,frac12 m;1+frac12 m;-x^2 mright)$$ where appears the Gaussian or ordinary hypergeometric function.



    So
    $$K_m=int_0^a log(1+x^2m),dx=a log left(1+a^2 mright)-2ma+2ma , _2F_1left(1,frac12 m;1+frac12 m;-a^2 mright)$$ and, if $a=1$,
    $$I_m=int_0^1 log(1+x^2m),dx= log left(2right)-2m+2m , _2F_1left(1,frac12 m;1+frac12 m;-1right)$$ which can write
    $$I_m=log (2)-Phi left(-1,1,1+frac12 mright)$$
    where appears the Lerch transcendent function.



    Now, (this is something I never looked at), a few (ugly) expressions for $f_m=Phi left(-1,1,1+frac12 mright)$ before any simplification
    $$f(1)=fracpi 2-2$$
    $$f(2)=frac14 left(pi tan left(fracpi 8right)+pi cot left(fracpi
    8right)-4 sqrt2 log left(sin left(fracpi 8right)right)+4
    sqrt2 log left(cos left(fracpi 8right)right)right)-4$$

    $$f(3)=frac2 left(pi -sqrt3 log left(sqrt3-1right)+sqrt3 log
    left(1+sqrt3right)right)left(sqrt3-1right)
    left(1+sqrt3right)-6$$

    $$f(4)=frac14 left(pi tan left(fracpi 16right)+pi cot left(fracpi
    16right)-8 sin left(fracpi 8right) log left(sin left(frac3
    pi 16right)right)+8 cos left(fracpi 8right) log left(cos
    left(fracpi 16right)right)-8 cos left(fracpi 8right) log
    left(sin left(fracpi 16right)right)+8 sin left(fracpi
    8right) log left(cos left(frac3 pi 16right)right)right)-8$$






    share|cite|improve this answer









    $endgroup$



    This does not answer the question as asked in the post.



    Consider
    $$J_m=int log(1+x^2m),dx$$ One integration by parts gives
    $$J_m=x log left(1+x^2 mright)-2mint frac x^2 m+1-1x^2 m+1,dx=x log left(1+x^2 mright)-2mx+2mint fracdxx^2 m+1$$ and
    $$int fracdxx^2 m+1=x , _2F_1left(1,frac12 m;1+frac12 m;-x^2 mright)$$ where appears the Gaussian or ordinary hypergeometric function.



    So
    $$K_m=int_0^a log(1+x^2m),dx=a log left(1+a^2 mright)-2ma+2ma , _2F_1left(1,frac12 m;1+frac12 m;-a^2 mright)$$ and, if $a=1$,
    $$I_m=int_0^1 log(1+x^2m),dx= log left(2right)-2m+2m , _2F_1left(1,frac12 m;1+frac12 m;-1right)$$ which can write
    $$I_m=log (2)-Phi left(-1,1,1+frac12 mright)$$
    where appears the Lerch transcendent function.



    Now, (this is something I never looked at), a few (ugly) expressions for $f_m=Phi left(-1,1,1+frac12 mright)$ before any simplification
    $$f(1)=fracpi 2-2$$
    $$f(2)=frac14 left(pi tan left(fracpi 8right)+pi cot left(fracpi
    8right)-4 sqrt2 log left(sin left(fracpi 8right)right)+4
    sqrt2 log left(cos left(fracpi 8right)right)right)-4$$

    $$f(3)=frac2 left(pi -sqrt3 log left(sqrt3-1right)+sqrt3 log
    left(1+sqrt3right)right)left(sqrt3-1right)
    left(1+sqrt3right)-6$$

    $$f(4)=frac14 left(pi tan left(fracpi 16right)+pi cot left(fracpi
    16right)-8 sin left(fracpi 8right) log left(sin left(frac3
    pi 16right)right)+8 cos left(fracpi 8right) log left(cos
    left(fracpi 16right)right)-8 cos left(fracpi 8right) log
    left(sin left(fracpi 16right)right)+8 sin left(fracpi
    8right) log left(cos left(frac3 pi 16right)right)right)-8$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 27 '18 at 8:47









    Claude LeiboviciClaude Leibovici

    125k1158135




    125k1158135











    • $begingroup$
      Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
      $endgroup$
      – user150203
      Dec 27 '18 at 8:49










    • $begingroup$
      @DavidG. Your post is very interesting. I need to spend more time with it !
      $endgroup$
      – Claude Leibovici
      Dec 27 '18 at 8:54










    • $begingroup$
      Please do! I look forward to any comments you may have. Thanks again for your post.
      $endgroup$
      – user150203
      Dec 27 '18 at 9:48










    • $begingroup$
      Mathematica calculates the same result
      $endgroup$
      – stocha
      Mar 22 at 19:11
















    • $begingroup$
      Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
      $endgroup$
      – user150203
      Dec 27 '18 at 8:49










    • $begingroup$
      @DavidG. Your post is very interesting. I need to spend more time with it !
      $endgroup$
      – Claude Leibovici
      Dec 27 '18 at 8:54










    • $begingroup$
      Please do! I look forward to any comments you may have. Thanks again for your post.
      $endgroup$
      – user150203
      Dec 27 '18 at 9:48










    • $begingroup$
      Mathematica calculates the same result
      $endgroup$
      – stocha
      Mar 22 at 19:11















    $begingroup$
    Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
    $endgroup$
    – user150203
    Dec 27 '18 at 8:49




    $begingroup$
    Yes, my collaborator and I came to the same result (very nice closed form indeed). If I may ask - what are your thoughts on the special case I've discussed?
    $endgroup$
    – user150203
    Dec 27 '18 at 8:49












    $begingroup$
    @DavidG. Your post is very interesting. I need to spend more time with it !
    $endgroup$
    – Claude Leibovici
    Dec 27 '18 at 8:54




    $begingroup$
    @DavidG. Your post is very interesting. I need to spend more time with it !
    $endgroup$
    – Claude Leibovici
    Dec 27 '18 at 8:54












    $begingroup$
    Please do! I look forward to any comments you may have. Thanks again for your post.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:48




    $begingroup$
    Please do! I look forward to any comments you may have. Thanks again for your post.
    $endgroup$
    – user150203
    Dec 27 '18 at 9:48












    $begingroup$
    Mathematica calculates the same result
    $endgroup$
    – stocha
    Mar 22 at 19:11




    $begingroup$
    Mathematica calculates the same result
    $endgroup$
    – stocha
    Mar 22 at 19:11











    4












    $begingroup$

    $colorbrowntextbfPreliminary notes.$




    Calculation of the required sum looks more complex task than of the
    issue integral.



    Approach with calculations of the sum via the inttegral allows to get close form both of the integral and the sum.




    Denote
    $$I_n=intlimits_0^1log(1+x^n)mathrm dx.tag1$$
    Easy to see that the issue integral is $I_2m.$



    $colorbrowntextbfClosed form of the integrals.$



    The first step is the integration by parts:
    $$I_n = xlog(1+x^n)biggr|_0^1-nint_0^1xdfracx^n-11+x^nmathrm dx,$$
    $$I_n = log2 - n + nintlimits_0^1dfracmathrm dx1+x^n.tag2$$
    (see also Claude Leibovici).



    Then, the substitution
    $$x=e^-ttag3$$
    gives
    $$J_n=intlimits_0^1dfracmathrm dx1+x^n=intlimits_0^inftydfrace^-t,mathrm dt1+e^-nt = sumlimits_k=0^infty(-1)^kintlimits_0^infty e^-(kn+1)t,mathrm dt=sumlimits_k=0^inftydfrac(-1)^kkn+1 ,$$
    $$J_n = intlimits_0^1dfracmathrm dx1+x^n= dfrac12nleft(psi_0left(dfracn+12nright) - psi_0left(dfrac12nright)right),tag4$$
    where $psi_0(x)$ is the polygamma function.



    Using $(2),(4),$ easy to get the expression for the OP integral in the form of
    $$boxedI_2m = log2 - 2m +dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right).tag5$$



    $colorbrowntextbfTesting of the solution.$



    Solution $(4)$ can be expressed via the elementary functions for a lot of the given values of n.



    Immediate calculations allow to check obtained expressions in the simple cases
    beginalign
    &J_1 = intlimits_0^1dfracmathrm dx1+x = log 2,\[4pt]
    &J_2 = intlimits_0^1dfracmathrm dx1+x^2 = arctan 1 = dfracpi4,\[4pt]
    &J_3 = intlimits_0^1dfracmathrm dx1+x^3
    = dfrac16intlimits_0^1left(dfrac21+x - dfrac2x-11-x+x^2 + dfrac31-x+x^2right),mathrm dx\
    &= left(dfrac13log(1+x) - dfrac16 log(1-x+x^2) + dfrac1sqrt3arctandfrac2x-1sqrt3right)bigg|_0^1
    = dfracpi3sqrt3 + frac13 log2.\[4pt]
    endalign

    More hard cases are
    beginalign
    &J_4 = intlimits_0^1dfracmathrm dx1+x^4
    = dfracsqrt28left(logdfracx^2 + sqrt2 x + 1x^2 - sqrt2 x + 1
    - 2arctan(1-sqrt2x) + 2arctan(sqrt2x+1)right)bigg|_0^1\[4pt]
    &= dfracsqrt28left(logdfrac(x^2 + sqrt2 x + 1)^21+x^4 + 2arctandfracxsqrt21-x^2right)bigg|_0^1
    = dfracsqrt28(pi+log(3+2sqrt2)),\[4pt]
    &J_4=dfrac18Bigg(dfrac12sqrtdfrac2-sqrt22+sqrt2pi+dfrac12sqrtdfrac2+sqrt22-sqrt2pi
    -2sqrt2left(-log2+dfrac12log(2-sqrt2)right)\[4pt]
    &+2sqrt2left(-log2+dfrac12log(2+sqrt2)right)Bigg)\[4pt]
    &=dfrac18Bigg(dfracpi2left(tandfracpi8+cotdfracpi8right)
    +sqrt2logdfrac2+sqrt22-sqrt2Bigg)
    = dfracsqrt28(pi+log(3+2sqrt2)),
    endalign

    and $n>4.$



    Numeric calculations of the issue integral $I_2m$ and its closed form $(5)$ also confirm the correctness of the closed form.



    $colorbrowntextbfThe alternative approach.$



    The alternative approach is considered in OP. Let us repeat it with some differences.



    Polynomial factorization can be presented in the form of



    beginalign
    &1+x^2m = prodlimits_j=0^2m-1large left(x-e^frac2j+12mpi iright)
    = prodlimits_j=0^m-1left(x^2-2xcosfrac2j+12mpi+1right),
    endalign

    so
    beginalign
    &I_2m = intlimits_0^1 ln(1+x^2m),mathrm dx
    = sumlimits_j=0^m-1 T_j,quadtextwhere\[4pt]
    &T_j = intlimits_0^1 lnleft(x^2-2xcosfrac2j+12mpi+1right),mathrm dx,\[4pt]
    &T_j = xlnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1
    - 2intlimits_0^1 dfracxleft(x-cosfrac2j+12mpiright)x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright)
    - 2-2intlimits_0^1 dfracxcosfrac2j+12mpi-1x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - 2cosfrac2j+12mpi intlimits_0^1 dfracx-cosfrac2j+12mpix^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & + 2intlimits_0^1 dfracsin^2frac2j+12mpileft(x-cosfrac2j+12mpiright)^2+sin^2frac2j+12mpi,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1\[4pt]
    & + 2sinfrac2j+12mpi arctandfracx-cosfrac2j+12mpisinfrac2j+12mpibigg|_0^1\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    left(arctandfrac1-cosfrac2j+12mpisinfrac2j+12mpi
    + arctandfraccosfrac2j+12mpisinfrac2j+12mpiright)\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    arctandfracsinfrac2j+12mpi
    sin^2frac2j+12mpi - left(1 - cosfrac2j+12mpiright)cosfrac2j+12mpi\[4pt]
    & = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + 2sinfrac2j+12mpiarctancotfrac2j+14mpi,\[4pt]
    &T_j = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + dfrac2(m-j)-12mpisinfrac2j+12mpi.
    endalign

    Taking in account that
    beginalign
    &sumlimits_j=0^m-1cosfrac2j+12mpi
    = Re sumlimits_j=0^m-1e^frac2j+12mpi i
    = Re large dfrac1-e^pi i1-e^fracpimie^fracpi2mi
    =Redfrac isinfracpi2m = 0,\[4pt]
    &sumlimits_j=0^m-1sinfrac2j+12mpi
    = Im sumlimits_j=0^m-1e^frac2j+12mpi i
    =Imdfracisinfracpi2m = dfrac1sinfracpi2m,\[4pt]
    &sumlimits_j=0^m-1frac2j+12mpisinfrac2j+12mpi
    = dfracpi2sinfracpi2m
    endalign

    (see also Wolfram Alpha calculations),



    one can get
    $$boxedI_2m = m(ln2-2) + dfracpi2cscfracpi2m
    + sumlimits_j=0^m-1left(1pmcosfrac2j+12mpiright)
    logleft(1pmcosfrac2j+12mpiright).tag6$$



    $colorbrowntextbfClosed form for the sum.$



    From $(5)-(6)$ should
    $$colorgreenboxedsumlimits_j=0^m-1left(1pm c_jright)
    logleft(1pm c_jright)
    = dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right) - (m-1)ln2 - dfracpi2cscfracpi2m
    ,tag7$$

    where
    $$c_j = cosfrac2j+12mpi.$$



    Numeric calculations confirm the expression $(6)$ for the both variants of the sign "$pm$".



    Also, numeric calculations of the issue sum and its closed form $(7)$ confirm the correctness of the closed form for the both variants of the sign "$pm$".






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Very nice presentation, already before the alternate approach (+1).
      $endgroup$
      – Markus Scheuer
      yesterday










    • $begingroup$
      @MarkusScheuer Thanks, you are welcome!
      $endgroup$
      – Yuri Negometyanov
      yesterday















    4












    $begingroup$

    $colorbrowntextbfPreliminary notes.$




    Calculation of the required sum looks more complex task than of the
    issue integral.



    Approach with calculations of the sum via the inttegral allows to get close form both of the integral and the sum.




    Denote
    $$I_n=intlimits_0^1log(1+x^n)mathrm dx.tag1$$
    Easy to see that the issue integral is $I_2m.$



    $colorbrowntextbfClosed form of the integrals.$



    The first step is the integration by parts:
    $$I_n = xlog(1+x^n)biggr|_0^1-nint_0^1xdfracx^n-11+x^nmathrm dx,$$
    $$I_n = log2 - n + nintlimits_0^1dfracmathrm dx1+x^n.tag2$$
    (see also Claude Leibovici).



    Then, the substitution
    $$x=e^-ttag3$$
    gives
    $$J_n=intlimits_0^1dfracmathrm dx1+x^n=intlimits_0^inftydfrace^-t,mathrm dt1+e^-nt = sumlimits_k=0^infty(-1)^kintlimits_0^infty e^-(kn+1)t,mathrm dt=sumlimits_k=0^inftydfrac(-1)^kkn+1 ,$$
    $$J_n = intlimits_0^1dfracmathrm dx1+x^n= dfrac12nleft(psi_0left(dfracn+12nright) - psi_0left(dfrac12nright)right),tag4$$
    where $psi_0(x)$ is the polygamma function.



    Using $(2),(4),$ easy to get the expression for the OP integral in the form of
    $$boxedI_2m = log2 - 2m +dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right).tag5$$



    $colorbrowntextbfTesting of the solution.$



    Solution $(4)$ can be expressed via the elementary functions for a lot of the given values of n.



    Immediate calculations allow to check obtained expressions in the simple cases
    beginalign
    &J_1 = intlimits_0^1dfracmathrm dx1+x = log 2,\[4pt]
    &J_2 = intlimits_0^1dfracmathrm dx1+x^2 = arctan 1 = dfracpi4,\[4pt]
    &J_3 = intlimits_0^1dfracmathrm dx1+x^3
    = dfrac16intlimits_0^1left(dfrac21+x - dfrac2x-11-x+x^2 + dfrac31-x+x^2right),mathrm dx\
    &= left(dfrac13log(1+x) - dfrac16 log(1-x+x^2) + dfrac1sqrt3arctandfrac2x-1sqrt3right)bigg|_0^1
    = dfracpi3sqrt3 + frac13 log2.\[4pt]
    endalign

    More hard cases are
    beginalign
    &J_4 = intlimits_0^1dfracmathrm dx1+x^4
    = dfracsqrt28left(logdfracx^2 + sqrt2 x + 1x^2 - sqrt2 x + 1
    - 2arctan(1-sqrt2x) + 2arctan(sqrt2x+1)right)bigg|_0^1\[4pt]
    &= dfracsqrt28left(logdfrac(x^2 + sqrt2 x + 1)^21+x^4 + 2arctandfracxsqrt21-x^2right)bigg|_0^1
    = dfracsqrt28(pi+log(3+2sqrt2)),\[4pt]
    &J_4=dfrac18Bigg(dfrac12sqrtdfrac2-sqrt22+sqrt2pi+dfrac12sqrtdfrac2+sqrt22-sqrt2pi
    -2sqrt2left(-log2+dfrac12log(2-sqrt2)right)\[4pt]
    &+2sqrt2left(-log2+dfrac12log(2+sqrt2)right)Bigg)\[4pt]
    &=dfrac18Bigg(dfracpi2left(tandfracpi8+cotdfracpi8right)
    +sqrt2logdfrac2+sqrt22-sqrt2Bigg)
    = dfracsqrt28(pi+log(3+2sqrt2)),
    endalign

    and $n>4.$



    Numeric calculations of the issue integral $I_2m$ and its closed form $(5)$ also confirm the correctness of the closed form.



    $colorbrowntextbfThe alternative approach.$



    The alternative approach is considered in OP. Let us repeat it with some differences.



    Polynomial factorization can be presented in the form of



    beginalign
    &1+x^2m = prodlimits_j=0^2m-1large left(x-e^frac2j+12mpi iright)
    = prodlimits_j=0^m-1left(x^2-2xcosfrac2j+12mpi+1right),
    endalign

    so
    beginalign
    &I_2m = intlimits_0^1 ln(1+x^2m),mathrm dx
    = sumlimits_j=0^m-1 T_j,quadtextwhere\[4pt]
    &T_j = intlimits_0^1 lnleft(x^2-2xcosfrac2j+12mpi+1right),mathrm dx,\[4pt]
    &T_j = xlnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1
    - 2intlimits_0^1 dfracxleft(x-cosfrac2j+12mpiright)x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright)
    - 2-2intlimits_0^1 dfracxcosfrac2j+12mpi-1x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - 2cosfrac2j+12mpi intlimits_0^1 dfracx-cosfrac2j+12mpix^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & + 2intlimits_0^1 dfracsin^2frac2j+12mpileft(x-cosfrac2j+12mpiright)^2+sin^2frac2j+12mpi,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1\[4pt]
    & + 2sinfrac2j+12mpi arctandfracx-cosfrac2j+12mpisinfrac2j+12mpibigg|_0^1\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    left(arctandfrac1-cosfrac2j+12mpisinfrac2j+12mpi
    + arctandfraccosfrac2j+12mpisinfrac2j+12mpiright)\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    arctandfracsinfrac2j+12mpi
    sin^2frac2j+12mpi - left(1 - cosfrac2j+12mpiright)cosfrac2j+12mpi\[4pt]
    & = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + 2sinfrac2j+12mpiarctancotfrac2j+14mpi,\[4pt]
    &T_j = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + dfrac2(m-j)-12mpisinfrac2j+12mpi.
    endalign

    Taking in account that
    beginalign
    &sumlimits_j=0^m-1cosfrac2j+12mpi
    = Re sumlimits_j=0^m-1e^frac2j+12mpi i
    = Re large dfrac1-e^pi i1-e^fracpimie^fracpi2mi
    =Redfrac isinfracpi2m = 0,\[4pt]
    &sumlimits_j=0^m-1sinfrac2j+12mpi
    = Im sumlimits_j=0^m-1e^frac2j+12mpi i
    =Imdfracisinfracpi2m = dfrac1sinfracpi2m,\[4pt]
    &sumlimits_j=0^m-1frac2j+12mpisinfrac2j+12mpi
    = dfracpi2sinfracpi2m
    endalign

    (see also Wolfram Alpha calculations),



    one can get
    $$boxedI_2m = m(ln2-2) + dfracpi2cscfracpi2m
    + sumlimits_j=0^m-1left(1pmcosfrac2j+12mpiright)
    logleft(1pmcosfrac2j+12mpiright).tag6$$



    $colorbrowntextbfClosed form for the sum.$



    From $(5)-(6)$ should
    $$colorgreenboxedsumlimits_j=0^m-1left(1pm c_jright)
    logleft(1pm c_jright)
    = dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right) - (m-1)ln2 - dfracpi2cscfracpi2m
    ,tag7$$

    where
    $$c_j = cosfrac2j+12mpi.$$



    Numeric calculations confirm the expression $(6)$ for the both variants of the sign "$pm$".



    Also, numeric calculations of the issue sum and its closed form $(7)$ confirm the correctness of the closed form for the both variants of the sign "$pm$".






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Very nice presentation, already before the alternate approach (+1).
      $endgroup$
      – Markus Scheuer
      yesterday










    • $begingroup$
      @MarkusScheuer Thanks, you are welcome!
      $endgroup$
      – Yuri Negometyanov
      yesterday













    4












    4








    4





    $begingroup$

    $colorbrowntextbfPreliminary notes.$




    Calculation of the required sum looks more complex task than of the
    issue integral.



    Approach with calculations of the sum via the inttegral allows to get close form both of the integral and the sum.




    Denote
    $$I_n=intlimits_0^1log(1+x^n)mathrm dx.tag1$$
    Easy to see that the issue integral is $I_2m.$



    $colorbrowntextbfClosed form of the integrals.$



    The first step is the integration by parts:
    $$I_n = xlog(1+x^n)biggr|_0^1-nint_0^1xdfracx^n-11+x^nmathrm dx,$$
    $$I_n = log2 - n + nintlimits_0^1dfracmathrm dx1+x^n.tag2$$
    (see also Claude Leibovici).



    Then, the substitution
    $$x=e^-ttag3$$
    gives
    $$J_n=intlimits_0^1dfracmathrm dx1+x^n=intlimits_0^inftydfrace^-t,mathrm dt1+e^-nt = sumlimits_k=0^infty(-1)^kintlimits_0^infty e^-(kn+1)t,mathrm dt=sumlimits_k=0^inftydfrac(-1)^kkn+1 ,$$
    $$J_n = intlimits_0^1dfracmathrm dx1+x^n= dfrac12nleft(psi_0left(dfracn+12nright) - psi_0left(dfrac12nright)right),tag4$$
    where $psi_0(x)$ is the polygamma function.



    Using $(2),(4),$ easy to get the expression for the OP integral in the form of
    $$boxedI_2m = log2 - 2m +dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right).tag5$$



    $colorbrowntextbfTesting of the solution.$



    Solution $(4)$ can be expressed via the elementary functions for a lot of the given values of n.



    Immediate calculations allow to check obtained expressions in the simple cases
    beginalign
    &J_1 = intlimits_0^1dfracmathrm dx1+x = log 2,\[4pt]
    &J_2 = intlimits_0^1dfracmathrm dx1+x^2 = arctan 1 = dfracpi4,\[4pt]
    &J_3 = intlimits_0^1dfracmathrm dx1+x^3
    = dfrac16intlimits_0^1left(dfrac21+x - dfrac2x-11-x+x^2 + dfrac31-x+x^2right),mathrm dx\
    &= left(dfrac13log(1+x) - dfrac16 log(1-x+x^2) + dfrac1sqrt3arctandfrac2x-1sqrt3right)bigg|_0^1
    = dfracpi3sqrt3 + frac13 log2.\[4pt]
    endalign

    More hard cases are
    beginalign
    &J_4 = intlimits_0^1dfracmathrm dx1+x^4
    = dfracsqrt28left(logdfracx^2 + sqrt2 x + 1x^2 - sqrt2 x + 1
    - 2arctan(1-sqrt2x) + 2arctan(sqrt2x+1)right)bigg|_0^1\[4pt]
    &= dfracsqrt28left(logdfrac(x^2 + sqrt2 x + 1)^21+x^4 + 2arctandfracxsqrt21-x^2right)bigg|_0^1
    = dfracsqrt28(pi+log(3+2sqrt2)),\[4pt]
    &J_4=dfrac18Bigg(dfrac12sqrtdfrac2-sqrt22+sqrt2pi+dfrac12sqrtdfrac2+sqrt22-sqrt2pi
    -2sqrt2left(-log2+dfrac12log(2-sqrt2)right)\[4pt]
    &+2sqrt2left(-log2+dfrac12log(2+sqrt2)right)Bigg)\[4pt]
    &=dfrac18Bigg(dfracpi2left(tandfracpi8+cotdfracpi8right)
    +sqrt2logdfrac2+sqrt22-sqrt2Bigg)
    = dfracsqrt28(pi+log(3+2sqrt2)),
    endalign

    and $n>4.$



    Numeric calculations of the issue integral $I_2m$ and its closed form $(5)$ also confirm the correctness of the closed form.



    $colorbrowntextbfThe alternative approach.$



    The alternative approach is considered in OP. Let us repeat it with some differences.



    Polynomial factorization can be presented in the form of



    beginalign
    &1+x^2m = prodlimits_j=0^2m-1large left(x-e^frac2j+12mpi iright)
    = prodlimits_j=0^m-1left(x^2-2xcosfrac2j+12mpi+1right),
    endalign

    so
    beginalign
    &I_2m = intlimits_0^1 ln(1+x^2m),mathrm dx
    = sumlimits_j=0^m-1 T_j,quadtextwhere\[4pt]
    &T_j = intlimits_0^1 lnleft(x^2-2xcosfrac2j+12mpi+1right),mathrm dx,\[4pt]
    &T_j = xlnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1
    - 2intlimits_0^1 dfracxleft(x-cosfrac2j+12mpiright)x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright)
    - 2-2intlimits_0^1 dfracxcosfrac2j+12mpi-1x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - 2cosfrac2j+12mpi intlimits_0^1 dfracx-cosfrac2j+12mpix^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & + 2intlimits_0^1 dfracsin^2frac2j+12mpileft(x-cosfrac2j+12mpiright)^2+sin^2frac2j+12mpi,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1\[4pt]
    & + 2sinfrac2j+12mpi arctandfracx-cosfrac2j+12mpisinfrac2j+12mpibigg|_0^1\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    left(arctandfrac1-cosfrac2j+12mpisinfrac2j+12mpi
    + arctandfraccosfrac2j+12mpisinfrac2j+12mpiright)\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    arctandfracsinfrac2j+12mpi
    sin^2frac2j+12mpi - left(1 - cosfrac2j+12mpiright)cosfrac2j+12mpi\[4pt]
    & = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + 2sinfrac2j+12mpiarctancotfrac2j+14mpi,\[4pt]
    &T_j = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + dfrac2(m-j)-12mpisinfrac2j+12mpi.
    endalign

    Taking in account that
    beginalign
    &sumlimits_j=0^m-1cosfrac2j+12mpi
    = Re sumlimits_j=0^m-1e^frac2j+12mpi i
    = Re large dfrac1-e^pi i1-e^fracpimie^fracpi2mi
    =Redfrac isinfracpi2m = 0,\[4pt]
    &sumlimits_j=0^m-1sinfrac2j+12mpi
    = Im sumlimits_j=0^m-1e^frac2j+12mpi i
    =Imdfracisinfracpi2m = dfrac1sinfracpi2m,\[4pt]
    &sumlimits_j=0^m-1frac2j+12mpisinfrac2j+12mpi
    = dfracpi2sinfracpi2m
    endalign

    (see also Wolfram Alpha calculations),



    one can get
    $$boxedI_2m = m(ln2-2) + dfracpi2cscfracpi2m
    + sumlimits_j=0^m-1left(1pmcosfrac2j+12mpiright)
    logleft(1pmcosfrac2j+12mpiright).tag6$$



    $colorbrowntextbfClosed form for the sum.$



    From $(5)-(6)$ should
    $$colorgreenboxedsumlimits_j=0^m-1left(1pm c_jright)
    logleft(1pm c_jright)
    = dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right) - (m-1)ln2 - dfracpi2cscfracpi2m
    ,tag7$$

    where
    $$c_j = cosfrac2j+12mpi.$$



    Numeric calculations confirm the expression $(6)$ for the both variants of the sign "$pm$".



    Also, numeric calculations of the issue sum and its closed form $(7)$ confirm the correctness of the closed form for the both variants of the sign "$pm$".






    share|cite|improve this answer











    $endgroup$



    $colorbrowntextbfPreliminary notes.$




    Calculation of the required sum looks more complex task than of the
    issue integral.



    Approach with calculations of the sum via the inttegral allows to get close form both of the integral and the sum.




    Denote
    $$I_n=intlimits_0^1log(1+x^n)mathrm dx.tag1$$
    Easy to see that the issue integral is $I_2m.$



    $colorbrowntextbfClosed form of the integrals.$



    The first step is the integration by parts:
    $$I_n = xlog(1+x^n)biggr|_0^1-nint_0^1xdfracx^n-11+x^nmathrm dx,$$
    $$I_n = log2 - n + nintlimits_0^1dfracmathrm dx1+x^n.tag2$$
    (see also Claude Leibovici).



    Then, the substitution
    $$x=e^-ttag3$$
    gives
    $$J_n=intlimits_0^1dfracmathrm dx1+x^n=intlimits_0^inftydfrace^-t,mathrm dt1+e^-nt = sumlimits_k=0^infty(-1)^kintlimits_0^infty e^-(kn+1)t,mathrm dt=sumlimits_k=0^inftydfrac(-1)^kkn+1 ,$$
    $$J_n = intlimits_0^1dfracmathrm dx1+x^n= dfrac12nleft(psi_0left(dfracn+12nright) - psi_0left(dfrac12nright)right),tag4$$
    where $psi_0(x)$ is the polygamma function.



    Using $(2),(4),$ easy to get the expression for the OP integral in the form of
    $$boxedI_2m = log2 - 2m +dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right).tag5$$



    $colorbrowntextbfTesting of the solution.$



    Solution $(4)$ can be expressed via the elementary functions for a lot of the given values of n.



    Immediate calculations allow to check obtained expressions in the simple cases
    beginalign
    &J_1 = intlimits_0^1dfracmathrm dx1+x = log 2,\[4pt]
    &J_2 = intlimits_0^1dfracmathrm dx1+x^2 = arctan 1 = dfracpi4,\[4pt]
    &J_3 = intlimits_0^1dfracmathrm dx1+x^3
    = dfrac16intlimits_0^1left(dfrac21+x - dfrac2x-11-x+x^2 + dfrac31-x+x^2right),mathrm dx\
    &= left(dfrac13log(1+x) - dfrac16 log(1-x+x^2) + dfrac1sqrt3arctandfrac2x-1sqrt3right)bigg|_0^1
    = dfracpi3sqrt3 + frac13 log2.\[4pt]
    endalign

    More hard cases are
    beginalign
    &J_4 = intlimits_0^1dfracmathrm dx1+x^4
    = dfracsqrt28left(logdfracx^2 + sqrt2 x + 1x^2 - sqrt2 x + 1
    - 2arctan(1-sqrt2x) + 2arctan(sqrt2x+1)right)bigg|_0^1\[4pt]
    &= dfracsqrt28left(logdfrac(x^2 + sqrt2 x + 1)^21+x^4 + 2arctandfracxsqrt21-x^2right)bigg|_0^1
    = dfracsqrt28(pi+log(3+2sqrt2)),\[4pt]
    &J_4=dfrac18Bigg(dfrac12sqrtdfrac2-sqrt22+sqrt2pi+dfrac12sqrtdfrac2+sqrt22-sqrt2pi
    -2sqrt2left(-log2+dfrac12log(2-sqrt2)right)\[4pt]
    &+2sqrt2left(-log2+dfrac12log(2+sqrt2)right)Bigg)\[4pt]
    &=dfrac18Bigg(dfracpi2left(tandfracpi8+cotdfracpi8right)
    +sqrt2logdfrac2+sqrt22-sqrt2Bigg)
    = dfracsqrt28(pi+log(3+2sqrt2)),
    endalign

    and $n>4.$



    Numeric calculations of the issue integral $I_2m$ and its closed form $(5)$ also confirm the correctness of the closed form.



    $colorbrowntextbfThe alternative approach.$



    The alternative approach is considered in OP. Let us repeat it with some differences.



    Polynomial factorization can be presented in the form of



    beginalign
    &1+x^2m = prodlimits_j=0^2m-1large left(x-e^frac2j+12mpi iright)
    = prodlimits_j=0^m-1left(x^2-2xcosfrac2j+12mpi+1right),
    endalign

    so
    beginalign
    &I_2m = intlimits_0^1 ln(1+x^2m),mathrm dx
    = sumlimits_j=0^m-1 T_j,quadtextwhere\[4pt]
    &T_j = intlimits_0^1 lnleft(x^2-2xcosfrac2j+12mpi+1right),mathrm dx,\[4pt]
    &T_j = xlnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1
    - 2intlimits_0^1 dfracxleft(x-cosfrac2j+12mpiright)x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright)
    - 2-2intlimits_0^1 dfracxcosfrac2j+12mpi-1x^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - 2cosfrac2j+12mpi intlimits_0^1 dfracx-cosfrac2j+12mpix^2-2xcosfrac2j+12mpi+1,mathrm dx\[4pt]
    & + 2intlimits_0^1 dfracsin^2frac2j+12mpileft(x-cosfrac2j+12mpiright)^2+sin^2frac2j+12mpi,mathrm dx\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(x^2-2xcosfrac2j+12mpi+1right)bigg|_0^1\[4pt]
    & + 2sinfrac2j+12mpi arctandfracx-cosfrac2j+12mpisinfrac2j+12mpibigg|_0^1\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    left(arctandfrac1-cosfrac2j+12mpisinfrac2j+12mpi
    + arctandfraccosfrac2j+12mpisinfrac2j+12mpiright)\[4pt]
    & = lnleft(2-2cosfrac2j+12mpiright) - 2
    - cosfrac2j+12mpi lnleft(2-2cosfrac2j+12mpiright)\[4pt]
    & + 2sinfrac2j+12mpi
    arctandfracsinfrac2j+12mpi
    sin^2frac2j+12mpi - left(1 - cosfrac2j+12mpiright)cosfrac2j+12mpi\[4pt]
    & = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + 2sinfrac2j+12mpiarctancotfrac2j+14mpi,\[4pt]
    &T_j = left(1-cosfrac2j+12mpiright)lnleft(2-2cosfrac2j+12mpiright) - 2 + dfrac2(m-j)-12mpisinfrac2j+12mpi.
    endalign

    Taking in account that
    beginalign
    &sumlimits_j=0^m-1cosfrac2j+12mpi
    = Re sumlimits_j=0^m-1e^frac2j+12mpi i
    = Re large dfrac1-e^pi i1-e^fracpimie^fracpi2mi
    =Redfrac isinfracpi2m = 0,\[4pt]
    &sumlimits_j=0^m-1sinfrac2j+12mpi
    = Im sumlimits_j=0^m-1e^frac2j+12mpi i
    =Imdfracisinfracpi2m = dfrac1sinfracpi2m,\[4pt]
    &sumlimits_j=0^m-1frac2j+12mpisinfrac2j+12mpi
    = dfracpi2sinfracpi2m
    endalign

    (see also Wolfram Alpha calculations),



    one can get
    $$boxedI_2m = m(ln2-2) + dfracpi2cscfracpi2m
    + sumlimits_j=0^m-1left(1pmcosfrac2j+12mpiright)
    logleft(1pmcosfrac2j+12mpiright).tag6$$



    $colorbrowntextbfClosed form for the sum.$



    From $(5)-(6)$ should
    $$colorgreenboxedsumlimits_j=0^m-1left(1pm c_jright)
    logleft(1pm c_jright)
    = dfrac12left(psi_0left(dfrac2m+14mright) - psi_0left(dfrac14mright)right) - (m-1)ln2 - dfracpi2cscfracpi2m
    ,tag7$$

    where
    $$c_j = cosfrac2j+12mpi.$$



    Numeric calculations confirm the expression $(6)$ for the both variants of the sign "$pm$".



    Also, numeric calculations of the issue sum and its closed form $(7)$ confirm the correctness of the closed form for the both variants of the sign "$pm$".







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited yesterday

























    answered Mar 26 at 2:16









    Yuri NegometyanovYuri Negometyanov

    12.2k1729




    12.2k1729







    • 1




      $begingroup$
      Very nice presentation, already before the alternate approach (+1).
      $endgroup$
      – Markus Scheuer
      yesterday










    • $begingroup$
      @MarkusScheuer Thanks, you are welcome!
      $endgroup$
      – Yuri Negometyanov
      yesterday












    • 1




      $begingroup$
      Very nice presentation, already before the alternate approach (+1).
      $endgroup$
      – Markus Scheuer
      yesterday










    • $begingroup$
      @MarkusScheuer Thanks, you are welcome!
      $endgroup$
      – Yuri Negometyanov
      yesterday







    1




    1




    $begingroup$
    Very nice presentation, already before the alternate approach (+1).
    $endgroup$
    – Markus Scheuer
    yesterday




    $begingroup$
    Very nice presentation, already before the alternate approach (+1).
    $endgroup$
    – Markus Scheuer
    yesterday












    $begingroup$
    @MarkusScheuer Thanks, you are welcome!
    $endgroup$
    – Yuri Negometyanov
    yesterday




    $begingroup$
    @MarkusScheuer Thanks, you are welcome!
    $endgroup$
    – Yuri Negometyanov
    yesterday











    2












    $begingroup$

    I did it!



    I actually have no idea whether or not this works, but this is how I did it.



    $ninBbb N$



    Define the sequence $r_k^(n)_k=1^k=n$ such that
    $$x^n+1=prod_k=1^nbig(x-r^(n)_kbig)$$
    We then know that $$r_k^(n)=expbigg[fracipin(2k-1)bigg]$$
    Then we define
    $$S_n=r_k^(n):kin[1,n]capBbb N$$
    So we have that
    $$frac1x^n+1=prod_rin S_nfrac1x-r=prod_k=1^nfrac1x-r_k^(n)$$
    Then we assume that we can write
    $$prod_rin S_nfrac1x-r=sum_rin S_nfracb(r)x-r$$
    Multiplying both sides by $prod_ain S_n(x-a)$,
    $$1=sum_rin S_nb(r)prod_ain S_n\ aneq r(x-a)$$
    So for any $omegain S_n$,
    $$1=b(omega)prod_ain S_n\ aneq omega(omega-a)$$
    $$b(omega)=prod_ain S_n\ aneq omegafrac1omega-a$$
    $$b(r_k^(n))=prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we know that
    $$I_n=int_0^1fracmathrmdx1+x^n=sum_k=1^nb(r_k^(n))int_0^1fracmathrmdxx-r_k^(n)$$
    $$I_n=sum_k=1^nb(r_k^(n))logbigg|fracr_k^(n)-1r_k^(n)bigg|$$
    $$I_n=sum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we have
    $$int_0^1log(1+x^n)mathrmdx=log2-n+nsum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    along with a plethora of other identities...






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
      $endgroup$
      – user150203
      Dec 31 '18 at 6:16










    • $begingroup$
      I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
      $endgroup$
      – user150203
      Dec 31 '18 at 9:47










    • $begingroup$
      Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
      $endgroup$
      – clathratus
      Dec 31 '18 at 20:28















    2












    $begingroup$

    I did it!



    I actually have no idea whether or not this works, but this is how I did it.



    $ninBbb N$



    Define the sequence $r_k^(n)_k=1^k=n$ such that
    $$x^n+1=prod_k=1^nbig(x-r^(n)_kbig)$$
    We then know that $$r_k^(n)=expbigg[fracipin(2k-1)bigg]$$
    Then we define
    $$S_n=r_k^(n):kin[1,n]capBbb N$$
    So we have that
    $$frac1x^n+1=prod_rin S_nfrac1x-r=prod_k=1^nfrac1x-r_k^(n)$$
    Then we assume that we can write
    $$prod_rin S_nfrac1x-r=sum_rin S_nfracb(r)x-r$$
    Multiplying both sides by $prod_ain S_n(x-a)$,
    $$1=sum_rin S_nb(r)prod_ain S_n\ aneq r(x-a)$$
    So for any $omegain S_n$,
    $$1=b(omega)prod_ain S_n\ aneq omega(omega-a)$$
    $$b(omega)=prod_ain S_n\ aneq omegafrac1omega-a$$
    $$b(r_k^(n))=prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we know that
    $$I_n=int_0^1fracmathrmdx1+x^n=sum_k=1^nb(r_k^(n))int_0^1fracmathrmdxx-r_k^(n)$$
    $$I_n=sum_k=1^nb(r_k^(n))logbigg|fracr_k^(n)-1r_k^(n)bigg|$$
    $$I_n=sum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we have
    $$int_0^1log(1+x^n)mathrmdx=log2-n+nsum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    along with a plethora of other identities...






    share|cite|improve this answer











    $endgroup$








    • 1




      $begingroup$
      Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
      $endgroup$
      – user150203
      Dec 31 '18 at 6:16










    • $begingroup$
      I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
      $endgroup$
      – user150203
      Dec 31 '18 at 9:47










    • $begingroup$
      Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
      $endgroup$
      – clathratus
      Dec 31 '18 at 20:28













    2












    2








    2





    $begingroup$

    I did it!



    I actually have no idea whether or not this works, but this is how I did it.



    $ninBbb N$



    Define the sequence $r_k^(n)_k=1^k=n$ such that
    $$x^n+1=prod_k=1^nbig(x-r^(n)_kbig)$$
    We then know that $$r_k^(n)=expbigg[fracipin(2k-1)bigg]$$
    Then we define
    $$S_n=r_k^(n):kin[1,n]capBbb N$$
    So we have that
    $$frac1x^n+1=prod_rin S_nfrac1x-r=prod_k=1^nfrac1x-r_k^(n)$$
    Then we assume that we can write
    $$prod_rin S_nfrac1x-r=sum_rin S_nfracb(r)x-r$$
    Multiplying both sides by $prod_ain S_n(x-a)$,
    $$1=sum_rin S_nb(r)prod_ain S_n\ aneq r(x-a)$$
    So for any $omegain S_n$,
    $$1=b(omega)prod_ain S_n\ aneq omega(omega-a)$$
    $$b(omega)=prod_ain S_n\ aneq omegafrac1omega-a$$
    $$b(r_k^(n))=prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we know that
    $$I_n=int_0^1fracmathrmdx1+x^n=sum_k=1^nb(r_k^(n))int_0^1fracmathrmdxx-r_k^(n)$$
    $$I_n=sum_k=1^nb(r_k^(n))logbigg|fracr_k^(n)-1r_k^(n)bigg|$$
    $$I_n=sum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we have
    $$int_0^1log(1+x^n)mathrmdx=log2-n+nsum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    along with a plethora of other identities...






    share|cite|improve this answer











    $endgroup$



    I did it!



    I actually have no idea whether or not this works, but this is how I did it.



    $ninBbb N$



    Define the sequence $r_k^(n)_k=1^k=n$ such that
    $$x^n+1=prod_k=1^nbig(x-r^(n)_kbig)$$
    We then know that $$r_k^(n)=expbigg[fracipin(2k-1)bigg]$$
    Then we define
    $$S_n=r_k^(n):kin[1,n]capBbb N$$
    So we have that
    $$frac1x^n+1=prod_rin S_nfrac1x-r=prod_k=1^nfrac1x-r_k^(n)$$
    Then we assume that we can write
    $$prod_rin S_nfrac1x-r=sum_rin S_nfracb(r)x-r$$
    Multiplying both sides by $prod_ain S_n(x-a)$,
    $$1=sum_rin S_nb(r)prod_ain S_n\ aneq r(x-a)$$
    So for any $omegain S_n$,
    $$1=b(omega)prod_ain S_n\ aneq omega(omega-a)$$
    $$b(omega)=prod_ain S_n\ aneq omegafrac1omega-a$$
    $$b(r_k^(n))=prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we know that
    $$I_n=int_0^1fracmathrmdx1+x^n=sum_k=1^nb(r_k^(n))int_0^1fracmathrmdxx-r_k^(n)$$
    $$I_n=sum_k=1^nb(r_k^(n))logbigg|fracr_k^(n)-1r_k^(n)bigg|$$
    $$I_n=sum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    So we have
    $$int_0^1log(1+x^n)mathrmdx=log2-n+nsum_k=1^nlogbigg|fracr_k^(n)-1r_k^(n)bigg|prod_p=1\ pneq k^nfrac1r_k^(n)-r_p^(n)$$
    along with a plethora of other identities...







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 11 at 21:56

























    answered Dec 31 '18 at 5:52









    clathratusclathratus

    5,0011438




    5,0011438







    • 1




      $begingroup$
      Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
      $endgroup$
      – user150203
      Dec 31 '18 at 6:16










    • $begingroup$
      I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
      $endgroup$
      – user150203
      Dec 31 '18 at 9:47










    • $begingroup$
      Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
      $endgroup$
      – clathratus
      Dec 31 '18 at 20:28












    • 1




      $begingroup$
      Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
      $endgroup$
      – user150203
      Dec 31 '18 at 6:16










    • $begingroup$
      I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
      $endgroup$
      – user150203
      Dec 31 '18 at 9:47










    • $begingroup$
      Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
      $endgroup$
      – clathratus
      Dec 31 '18 at 20:28







    1




    1




    $begingroup$
    Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
    $endgroup$
    – user150203
    Dec 31 '18 at 6:16




    $begingroup$
    Cheers @clathratus - I will have to have a look over in detail, but on the surface it looks good. Thanks heaps!
    $endgroup$
    – user150203
    Dec 31 '18 at 6:16












    $begingroup$
    I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
    $endgroup$
    – user150203
    Dec 31 '18 at 9:47




    $begingroup$
    I say this not as a critique of your post, but of my own... do I have defend the set $r_j$ as having size $n$ ?? i.e. that the $c_j$ are distinct...
    $endgroup$
    – user150203
    Dec 31 '18 at 9:47












    $begingroup$
    Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
    $endgroup$
    – clathratus
    Dec 31 '18 at 20:28




    $begingroup$
    Well any polynomial with degree $n$ is going to have $n$ distinct roots, so it would make sense that $|S_n|=n$
    $endgroup$
    – clathratus
    Dec 31 '18 at 20:28











    1












    $begingroup$

    Here's another, quicker, method (I also don't know if this one works)



    Using the same $r_k^(n)$ as last time, we apply the $logprod_ia_i=sum_ilog a_i$ property to see that
    $$log(1+x^n)=logprod_k=1^n(x-r_k^(n))=sum_k=1^nlog(x-r_k^(n))$$
    So
    $$I_n=int_0^1log(1+x^n)mathrm dx=sum_k=1^nint_0^1log(x-r_k^(n))mathrm dx$$
    This last integral boils down to
    $$beginalign
    int_0^1log(x-a)mathrm dx=&alogfraca1+a+log(1-a)-1\
    =&logfraca^a(1-a)e(1+a)^a
    endalign$$

    So
    $$I_n=sum_rin S_nlogfracr^r(1-r)e(1+r)^r$$
    And you know how I love product representations, so we again use $logprod_ia_i=sum_ilog a_i$ to see that
    $$
    I_n=logprod_rin S_nfracr^r(1-r)e(1+r)^r\
    prod_rin S_nfracr^r(1-r)(1+r)^r=exp(n+I_n)
    $$

    Which I just think is really neat.






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      Here's another, quicker, method (I also don't know if this one works)



      Using the same $r_k^(n)$ as last time, we apply the $logprod_ia_i=sum_ilog a_i$ property to see that
      $$log(1+x^n)=logprod_k=1^n(x-r_k^(n))=sum_k=1^nlog(x-r_k^(n))$$
      So
      $$I_n=int_0^1log(1+x^n)mathrm dx=sum_k=1^nint_0^1log(x-r_k^(n))mathrm dx$$
      This last integral boils down to
      $$beginalign
      int_0^1log(x-a)mathrm dx=&alogfraca1+a+log(1-a)-1\
      =&logfraca^a(1-a)e(1+a)^a
      endalign$$

      So
      $$I_n=sum_rin S_nlogfracr^r(1-r)e(1+r)^r$$
      And you know how I love product representations, so we again use $logprod_ia_i=sum_ilog a_i$ to see that
      $$
      I_n=logprod_rin S_nfracr^r(1-r)e(1+r)^r\
      prod_rin S_nfracr^r(1-r)(1+r)^r=exp(n+I_n)
      $$

      Which I just think is really neat.






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        Here's another, quicker, method (I also don't know if this one works)



        Using the same $r_k^(n)$ as last time, we apply the $logprod_ia_i=sum_ilog a_i$ property to see that
        $$log(1+x^n)=logprod_k=1^n(x-r_k^(n))=sum_k=1^nlog(x-r_k^(n))$$
        So
        $$I_n=int_0^1log(1+x^n)mathrm dx=sum_k=1^nint_0^1log(x-r_k^(n))mathrm dx$$
        This last integral boils down to
        $$beginalign
        int_0^1log(x-a)mathrm dx=&alogfraca1+a+log(1-a)-1\
        =&logfraca^a(1-a)e(1+a)^a
        endalign$$

        So
        $$I_n=sum_rin S_nlogfracr^r(1-r)e(1+r)^r$$
        And you know how I love product representations, so we again use $logprod_ia_i=sum_ilog a_i$ to see that
        $$
        I_n=logprod_rin S_nfracr^r(1-r)e(1+r)^r\
        prod_rin S_nfracr^r(1-r)(1+r)^r=exp(n+I_n)
        $$

        Which I just think is really neat.






        share|cite|improve this answer









        $endgroup$



        Here's another, quicker, method (I also don't know if this one works)



        Using the same $r_k^(n)$ as last time, we apply the $logprod_ia_i=sum_ilog a_i$ property to see that
        $$log(1+x^n)=logprod_k=1^n(x-r_k^(n))=sum_k=1^nlog(x-r_k^(n))$$
        So
        $$I_n=int_0^1log(1+x^n)mathrm dx=sum_k=1^nint_0^1log(x-r_k^(n))mathrm dx$$
        This last integral boils down to
        $$beginalign
        int_0^1log(x-a)mathrm dx=&alogfraca1+a+log(1-a)-1\
        =&logfraca^a(1-a)e(1+a)^a
        endalign$$

        So
        $$I_n=sum_rin S_nlogfracr^r(1-r)e(1+r)^r$$
        And you know how I love product representations, so we again use $logprod_ia_i=sum_ilog a_i$ to see that
        $$
        I_n=logprod_rin S_nfracr^r(1-r)e(1+r)^r\
        prod_rin S_nfracr^r(1-r)(1+r)^r=exp(n+I_n)
        $$

        Which I just think is really neat.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 23:58









        clathratusclathratus

        5,0011438




        5,0011438



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3053596%2fcompute-sum-limits-j-0m-1-leftc-j-1-right-ln-leftc-j-1-right%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

            Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε