Show that $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)=mathbbQ(sqrt3)$. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Let $a$ be a complex zero of $x^2+x+1$ over $mathbbQ$. Prove that $mathbbQ(sqrta)=mathbbQ(a)$.Show that $mathbbQ(sqrt-14,sqrt-2sqrt2-1)$ has degree 8 over $mathbbQ$Degree of Field Extension $mathbbQ(sqrt[4]2):mathbbQ(sqrt2)$Prove that there exists no algebraically closed field $F$ such that $barmathbbQ subsetneq F subsetneq overlinemathbbQ(pi)$Alternative way to show $sqrt2+ sqrt3$ is algebraic over $mathbbQ$ of degree 4.Proof that $[overlinemathbb Q:mathbb Rcapoverlinemathbb Q]=2$Show that the algebraic closure of $F$ in $K$ is an algebraic closure of $F$.$mathbb Q(zeta_m)capmathbb Q(zeta_n)=mathbb Q(zeta_d)$Degree of the field of rational numbers extended by a complex numberShow that $mathbbQ(sqrt3,sqrt[4]3, sqrt[8]3,…)$ is algebraic over $mathbbQ$ but not a finite extension.

Did Xerox really develop the first LAN?

ListPlot join points by nearest neighbor rather than order

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

How widely used is the term Treppenwitz? Is it something that most Germans know?

Can Pao de Queijo, and similar foods, be kosher for Passover?

Is it possible to boil a liquid by just mixing many immiscible liquids together?

What are the motives behind Cersei's orders given to Bronn?

Why does Python start at index 1 when iterating an array backwards?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Storing hydrofluoric acid before the invention of plastics

Should I use Javascript Classes or Apex Classes in Lightning Web Components?

Single word antonym of "flightless"

Does surprise arrest existing movement?

Is it true that "carbohydrates are of no use for the basal metabolic need"?

Why is "Consequences inflicted." not a sentence?

When is phishing education going too far?

Does polymorph use a PC’s CR or its level?

Java 8 stream max() function argument type Comparator vs Comparable

Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?

How can players work together to take actions that are otherwise impossible?

Right-skewed distribution with mean equals to mode?

What are 'alternative tunings' of a guitar and why would you use them? Doesn't it make it more difficult to play?

How do I mention the quality of my school without bragging

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?



Show that $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)=mathbbQ(sqrt3)$.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Let $a$ be a complex zero of $x^2+x+1$ over $mathbbQ$. Prove that $mathbbQ(sqrta)=mathbbQ(a)$.Show that $mathbbQ(sqrt-14,sqrt-2sqrt2-1)$ has degree 8 over $mathbbQ$Degree of Field Extension $mathbbQ(sqrt[4]2):mathbbQ(sqrt2)$Prove that there exists no algebraically closed field $F$ such that $barmathbbQ subsetneq F subsetneq overlinemathbbQ(pi)$Alternative way to show $sqrt2+ sqrt3$ is algebraic over $mathbbQ$ of degree 4.Proof that $[overlinemathbb Q:mathbb Rcapoverlinemathbb Q]=2$Show that the algebraic closure of $F$ in $K$ is an algebraic closure of $F$.$mathbb Q(zeta_m)capmathbb Q(zeta_n)=mathbb Q(zeta_d)$Degree of the field of rational numbers extended by a complex numberShow that $mathbbQ(sqrt3,sqrt[4]3, sqrt[8]3,…)$ is algebraic over $mathbbQ$ but not a finite extension.










2












$begingroup$



Show that $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)=mathbbQ(sqrt3)$.




I know that by closure, $sqrt3in mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$, but what about the other containment? I want to use the order of the extensions. I know the degrees of each one are $4$ over the field $mathbbQ$, and I know that $mathbbQ(sqrt1+sqrt3)$ and $ mathbbQ(sqrt1-sqrt3)$ are not equal to each other. But where can I go from here? How do I show that $[mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3]=1$?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$



    Show that $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)=mathbbQ(sqrt3)$.




    I know that by closure, $sqrt3in mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$, but what about the other containment? I want to use the order of the extensions. I know the degrees of each one are $4$ over the field $mathbbQ$, and I know that $mathbbQ(sqrt1+sqrt3)$ and $ mathbbQ(sqrt1-sqrt3)$ are not equal to each other. But where can I go from here? How do I show that $[mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3]=1$?










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$



      Show that $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)=mathbbQ(sqrt3)$.




      I know that by closure, $sqrt3in mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$, but what about the other containment? I want to use the order of the extensions. I know the degrees of each one are $4$ over the field $mathbbQ$, and I know that $mathbbQ(sqrt1+sqrt3)$ and $ mathbbQ(sqrt1-sqrt3)$ are not equal to each other. But where can I go from here? How do I show that $[mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3]=1$?










      share|cite|improve this question









      $endgroup$





      Show that $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)=mathbbQ(sqrt3)$.




      I know that by closure, $sqrt3in mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$, but what about the other containment? I want to use the order of the extensions. I know the degrees of each one are $4$ over the field $mathbbQ$, and I know that $mathbbQ(sqrt1+sqrt3)$ and $ mathbbQ(sqrt1-sqrt3)$ are not equal to each other. But where can I go from here? How do I show that $[mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3]=1$?







      abstract-algebra extension-field






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 31 at 23:50









      numericalorangenumericalorange

      1,949314




      1,949314




















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          $ [mathbbQ(sqrt1+sqrt3):(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)][ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=4$.



          You deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]$ divides $4$, it is not $4$ since $mathbbQ(sqrt1+sqrt3)$ is distinct of $ mathbbQ(sqrt1-sqrt3)$, so it is $1$ or $2$, it is not $1$ since $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$ contains $mathbbQ(sqrt3)$, so it is $2$, you deduce that:



          $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)][mathbbQ(sqrt3):mathbbQ]$. Since $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[mathbbQ(sqrt3):mathbbQ]=2$, you deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)]=1$.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            Let $alpha:=sqrt1+sqrt3$ and $beta:=sqrt1-sqrt3$. You know that
            $$[BbbQ(alpha):BbbQ]=[BbbQ(beta):BbbQ]=4,$$
            and that $BbbQ(sqrt3)subsetBbbQ(alpha)capBbbQ(beta)$. Because the degree is multiplicative over towers of field extensions
            $$[BbbQ(alpha):BbbQ]=[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]cdot[BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]cdot[BbbQ(sqrt3):BbbQ],$$
            and because you know the two fields $BbbQ(alpha)$ and $BbbQ(beta)$ are not the same, you have
            $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]>1,$$
            and clearly $[BbbQ(sqrt3):BbbQ]=2$. Because $[BbbQ(alpha):BbbQ]=4$ it follows that
            $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]=2
            qquadtext and qquad
            [BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]=1,$$

            which means that $BbbQ(alpha)capBbbQ(beta)=BbbQ(sqrt3)$.






            share|cite|improve this answer











            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170032%2fshow-that-mathbbq-sqrt1-sqrt3-cap-mathbbq-sqrt1-sqrt3-math%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              $ [mathbbQ(sqrt1+sqrt3):(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)][ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=4$.



              You deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]$ divides $4$, it is not $4$ since $mathbbQ(sqrt1+sqrt3)$ is distinct of $ mathbbQ(sqrt1-sqrt3)$, so it is $1$ or $2$, it is not $1$ since $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$ contains $mathbbQ(sqrt3)$, so it is $2$, you deduce that:



              $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)][mathbbQ(sqrt3):mathbbQ]$. Since $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[mathbbQ(sqrt3):mathbbQ]=2$, you deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)]=1$.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                $ [mathbbQ(sqrt1+sqrt3):(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)][ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=4$.



                You deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]$ divides $4$, it is not $4$ since $mathbbQ(sqrt1+sqrt3)$ is distinct of $ mathbbQ(sqrt1-sqrt3)$, so it is $1$ or $2$, it is not $1$ since $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$ contains $mathbbQ(sqrt3)$, so it is $2$, you deduce that:



                $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)][mathbbQ(sqrt3):mathbbQ]$. Since $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[mathbbQ(sqrt3):mathbbQ]=2$, you deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)]=1$.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  $ [mathbbQ(sqrt1+sqrt3):(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)][ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=4$.



                  You deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]$ divides $4$, it is not $4$ since $mathbbQ(sqrt1+sqrt3)$ is distinct of $ mathbbQ(sqrt1-sqrt3)$, so it is $1$ or $2$, it is not $1$ since $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$ contains $mathbbQ(sqrt3)$, so it is $2$, you deduce that:



                  $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)][mathbbQ(sqrt3):mathbbQ]$. Since $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[mathbbQ(sqrt3):mathbbQ]=2$, you deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)]=1$.






                  share|cite|improve this answer









                  $endgroup$



                  $ [mathbbQ(sqrt1+sqrt3):(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)][ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=4$.



                  You deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]$ divides $4$, it is not $4$ since $mathbbQ(sqrt1+sqrt3)$ is distinct of $ mathbbQ(sqrt1-sqrt3)$, so it is $1$ or $2$, it is not $1$ since $mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3)$ contains $mathbbQ(sqrt3)$, so it is $2$, you deduce that:



                  $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)][mathbbQ(sqrt3):mathbbQ]$. Since $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ]=[mathbbQ(sqrt3):mathbbQ]=2$, you deduce that $[ mathbbQ(sqrt1+sqrt3)cap mathbbQ(sqrt1-sqrt3):mathbbQ(sqrt3)]=1$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 31 at 23:58









                  Tsemo AristideTsemo Aristide

                  60.7k11446




                  60.7k11446





















                      1












                      $begingroup$

                      Let $alpha:=sqrt1+sqrt3$ and $beta:=sqrt1-sqrt3$. You know that
                      $$[BbbQ(alpha):BbbQ]=[BbbQ(beta):BbbQ]=4,$$
                      and that $BbbQ(sqrt3)subsetBbbQ(alpha)capBbbQ(beta)$. Because the degree is multiplicative over towers of field extensions
                      $$[BbbQ(alpha):BbbQ]=[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]cdot[BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]cdot[BbbQ(sqrt3):BbbQ],$$
                      and because you know the two fields $BbbQ(alpha)$ and $BbbQ(beta)$ are not the same, you have
                      $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]>1,$$
                      and clearly $[BbbQ(sqrt3):BbbQ]=2$. Because $[BbbQ(alpha):BbbQ]=4$ it follows that
                      $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]=2
                      qquadtext and qquad
                      [BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]=1,$$

                      which means that $BbbQ(alpha)capBbbQ(beta)=BbbQ(sqrt3)$.






                      share|cite|improve this answer











                      $endgroup$

















                        1












                        $begingroup$

                        Let $alpha:=sqrt1+sqrt3$ and $beta:=sqrt1-sqrt3$. You know that
                        $$[BbbQ(alpha):BbbQ]=[BbbQ(beta):BbbQ]=4,$$
                        and that $BbbQ(sqrt3)subsetBbbQ(alpha)capBbbQ(beta)$. Because the degree is multiplicative over towers of field extensions
                        $$[BbbQ(alpha):BbbQ]=[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]cdot[BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]cdot[BbbQ(sqrt3):BbbQ],$$
                        and because you know the two fields $BbbQ(alpha)$ and $BbbQ(beta)$ are not the same, you have
                        $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]>1,$$
                        and clearly $[BbbQ(sqrt3):BbbQ]=2$. Because $[BbbQ(alpha):BbbQ]=4$ it follows that
                        $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]=2
                        qquadtext and qquad
                        [BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]=1,$$

                        which means that $BbbQ(alpha)capBbbQ(beta)=BbbQ(sqrt3)$.






                        share|cite|improve this answer











                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          Let $alpha:=sqrt1+sqrt3$ and $beta:=sqrt1-sqrt3$. You know that
                          $$[BbbQ(alpha):BbbQ]=[BbbQ(beta):BbbQ]=4,$$
                          and that $BbbQ(sqrt3)subsetBbbQ(alpha)capBbbQ(beta)$. Because the degree is multiplicative over towers of field extensions
                          $$[BbbQ(alpha):BbbQ]=[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]cdot[BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]cdot[BbbQ(sqrt3):BbbQ],$$
                          and because you know the two fields $BbbQ(alpha)$ and $BbbQ(beta)$ are not the same, you have
                          $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]>1,$$
                          and clearly $[BbbQ(sqrt3):BbbQ]=2$. Because $[BbbQ(alpha):BbbQ]=4$ it follows that
                          $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]=2
                          qquadtext and qquad
                          [BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]=1,$$

                          which means that $BbbQ(alpha)capBbbQ(beta)=BbbQ(sqrt3)$.






                          share|cite|improve this answer











                          $endgroup$



                          Let $alpha:=sqrt1+sqrt3$ and $beta:=sqrt1-sqrt3$. You know that
                          $$[BbbQ(alpha):BbbQ]=[BbbQ(beta):BbbQ]=4,$$
                          and that $BbbQ(sqrt3)subsetBbbQ(alpha)capBbbQ(beta)$. Because the degree is multiplicative over towers of field extensions
                          $$[BbbQ(alpha):BbbQ]=[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]cdot[BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]cdot[BbbQ(sqrt3):BbbQ],$$
                          and because you know the two fields $BbbQ(alpha)$ and $BbbQ(beta)$ are not the same, you have
                          $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]>1,$$
                          and clearly $[BbbQ(sqrt3):BbbQ]=2$. Because $[BbbQ(alpha):BbbQ]=4$ it follows that
                          $$[BbbQ(alpha):BbbQ(alpha)capBbbQ(beta)]=2
                          qquadtext and qquad
                          [BbbQ(alpha)capBbbQ(beta):BbbQ(sqrt3)]=1,$$

                          which means that $BbbQ(alpha)capBbbQ(beta)=BbbQ(sqrt3)$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Apr 1 at 0:16

























                          answered Apr 1 at 0:10









                          ServaesServaes

                          30.6k342101




                          30.6k342101



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170032%2fshow-that-mathbbq-sqrt1-sqrt3-cap-mathbbq-sqrt1-sqrt3-math%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                              Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                              Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε