Skip to main content

354 a.C. Eventos | Nascimentos | Falecimentos | Menu de navegação

Multi tool use
Multi tool use

Anos do século IV a.C.354 a.C.











(function()var node=document.getElementById("mw-dismissablenotice-anonplace");if(node)node.outerHTML="u003Cdiv class="mw-dismissable-notice"u003Eu003Cdiv class="mw-dismissable-notice-close"u003E[u003Ca tabindex="0" role="button"u003Eocultaru003C/au003E]u003C/divu003Eu003Cdiv class="mw-dismissable-notice-body"u003Eu003Cdiv id="localNotice" lang="pt" dir="ltr"u003Eu003C/divu003Eu003C/divu003Eu003C/divu003E";());




354 a.C.




Origem: Wikipédia, a enciclopédia livre.






Saltar para a navegação
Saltar para a pesquisa









SÉCULOS:

Século V a.C. — Século IV a.C. — Século III a.C.

DÉCADAS:

400 a.C. • 390 a.C. • 380 a.C. • 370 a.C. • 360 a.C.
350 a.C. • 340 a.C. • 330 a.C. • 320 a.C. • 310 a.C. • 300 a.C.

ANOS:

359 a.C. • 358 a.C. • 357 a.C. • 356 a.C. • 355 a.C.
354 a.C. • 353 a.C. • 352 a.C. • 351 a.C. • 350 a.C. • 349 a.C.


Eventos |



  • Marco Fábio Ambusto, pela terceira vez, e Tito Quíncio Peno Capitolino Crispino, cônsules romanos.


Nascimentos |



Falecimentos |











Obtida de "https://pt.wikipedia.org/w/index.php?title=354_a.C.&oldid=44498478"










Menu de navegação


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.752","walltime":"0.790","ppvisitednodes":"value":15349,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":17886,"limit":2097152,"templateargumentsize":"value":21816,"limit":2097152,"expansiondepth":"value":26,"limit":40,"expensivefunctioncount":"value":21,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 754.920 1 -total"," 94.26% 711.554 1 Predefinição:Cabeçalho_dos_anos"," 74.76% 564.368 66 Predefinição:ACsufixo"," 61.98% 467.905 236 Predefinição:SomaAnos/nosufix"," 44.42% 335.370 11 Predefinição:Cabeçalho_dos_anos/anos1"," 43.14% 325.691 33 Predefinição:SomaAnos"," 42.93% 324.072 11 Predefinição:Cabeçalho_dos_anos/décadas2"," 41.56% 313.775 33 Predefinição:Cabeçalho_dos_anos/décadas1"," 31.33% 236.535 33 Predefinição:Ano2década/nosufix"," 27.83% 210.067 239 Predefinição:Str_endswith"],"scribunto":"limitreport-timeusage":"value":"0.385","limit":"10.000","limitreport-memusage":"value":1851232,"limit":52428800,"cachereport":"origin":"mw1303","timestamp":"20190314013339","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":131,"wgHostname":"mw1273"););J XPp3Ea
OLD,6BxdrkygJo LO6wxk,HJI4T3cW3SS5qH59Yy72eJopdpZFScZ2XN OyAa,h96uLqPMf,sa9R5onCswHaS4G8

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?