Skip to main content

-354 Eveniments | Naissenças | Decèsses | Menú de navigacion

Paginas amb de proprietats pas resolgudas-354


-380-370-360-340-330-320Sègle V abCSègle III abCMillenni II abCMillenni IsatrapaOrontèsOrontès-353












-354




Un article de Wikipèdia, l'enciclopèdia liura.






Salta a la navegació
Salta a la cerca































-354


Descobridor o inventaire
Data de descobèrta
Contrari
Color
Simbòl de quantitat
Simbòl d'unitat
Proprietat de
Fondador
Compren
Data de debuta
Data de fin
Precedit per
Seguit per
Coordenadas


Ans :
-357 -356 -355  -354  -353 -352 -351

Decennis :
-380 -370 -360  -350  -340 -330 -320

Sègles :
Sègle V abC  Sègle IV abC  Sègle III abC
Millennis :
Millenni II abC  Millenni I abC  Millenni I



Autres calendièrs :
Roman •
Chinés •
Gregorian •
Ebrieu •
Indó •
Musulman •
Persan •
Republican


Aquesta pagina concernís l'an -354 del calendièr gregorian.





Eveniments |



Occitània |



  • Euròpa |



    • Asia |



      Empèri Aquemenida |


      Perseguida de la revòuta dei satrapas occidentaus amb una victòria importanta dei tropas dau satrapa Orontès. Pasmens, Orontès aprofichèt sa situacion per se raprochar dau rèi e negociar son perdon. Aquò entraïnèt l'afondrament de la rebellion tre l'annada seguenta (→ -353).



      Arts |



      • Sciéncias e tecnicas |



        • Economia |



          • Naissenças |



            • Decèsses |





            Recuperada de « https://oc.wikipedia.org/w/index.php?title=-354&oldid=1957838 »










        Menú de navigacion


























        (window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.212","walltime":"0.291","ppvisitednodes":"value":1912,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":24962,"limit":2097152,"templateargumentsize":"value":1306,"limit":2097152,"expansiondepth":"value":19,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":8,"limit":5000000,"entityaccesscount":"value":1,"limit":400,"timingprofile":["100.00% 267.518 1 -total","100.00% 267.518 1 Modèl:Annada2"," 97.76% 261.524 1 Modèl:AnsPerChifra"," 72.03% 192.690 1 Modèl:Debuta_Infobox_V2"," 29.28% 78.335 16 Modèl:Wikidata_ligam"," 14.41% 38.548 13 Modèl:Linha_Wikidata_ligam"," 14.25% 38.116 14 Modèl:Linha_Infobox"," 10.32% 27.613 5 Modèl:Wikidata"," 8.03% 21.493 1 Modèl:AnsPerChifra/Sègles"," 5.79% 15.502 1 Modèl:AnsPerChifra/Millennis"],"scribunto":"limitreport-timeusage":"value":"0.070","limit":"10.000","limitreport-memusage":"value":1873762,"limit":52428800,"cachereport":"origin":"mw1274","timestamp":"20190403083847","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":140,"wgHostname":"mw1329"););

Popular posts from this blog

Boston (Lincolnshire) Stedsbyld | Berne yn Boston | NavigaasjemenuBoston Borough CouncilBoston, Lincolnshire

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر