how can I prove that $operatornameim(K circ L) subseteq ker(K)$? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why is $ker(rho-sigma)subseteqker(rho)oplusoperatornameim(sigma)$?How to prove a property of ranks: $operatornamerank(AB)= operatornamerank(B)- dim(operatornameIm B cap ker A)$$ker(T) subseteqker(S)$ implies the exist some $H$ s.t. $Hcirc T=S$Problem proving: $V = ker T oplus operatornameimT$Prove that $textrank T = operatornamerank T^2 iff operatornameImT cap ker T = vec 0$Prove that $operatornamerank (f) + operatornamerank (g) -dim Wleq operatornamerank(gcirc f)$.given A linear map $T:Vlongrightarrow V$, let $dim V = n$, prove that for every $kgeq n, operatornameImT^kcap ker T^k=0$.show that $operatornamerank(gcirc f) leq operatornamerank(f)+operatornamerank(g)-n$How to show that $dimker(AB) le dim ker A + dim ker B $?How to prove that if $f^2=f$ then $V= ker f + operatornameIm f$.
What would be the ideal power source for a cybernetic eye?
Is the Standard Deduction better than Itemized when both are the same amount?
Is there a "higher Segal conjecture"?
How to recreate this effect in Photoshop?
What makes black pepper strong or mild?
Using et al. for a last / senior author rather than for a first author
"Seemed to had" is it correct?
When is phishing education going too far?
Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?
How can I make names more distinctive without making them longer?
Center align columns in table ignoring minus signs?
How discoverable are IPv6 addresses and AAAA names by potential attackers?
Sorting numerically
How to bypass password on Windows XP account?
Letter Boxed validator
Single word antonym of "flightless"
Why does Python start at index -1 when indexing a list from the end?
How do I stop a creek from eroding my steep embankment?
What causes the vertical darker bands in my photo?
Right-skewed distribution with mean equals to mode?
If 'B is more likely given A', then 'A is more likely given B'
What's the purpose of writing one's academic bio in 3rd person?
Should I discuss the type of campaign with my players?
What is the longest distance a 13th-level monk can jump while attacking on the same turn?
how can I prove that $operatornameim(K circ L) subseteq ker(K)$?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why is $ker(rho-sigma)subseteqker(rho)oplusoperatornameim(sigma)$?How to prove a property of ranks: $operatornamerank(AB)= operatornamerank(B)- dim(operatornameIm B cap ker A)$$ker(T) subseteqker(S)$ implies the exist some $H$ s.t. $Hcirc T=S$Problem proving: $V = ker T oplus operatornameimT$Prove that $textrank T = operatornamerank T^2 iff operatornameImT cap ker T = vec 0$Prove that $operatornamerank (f) + operatornamerank (g) -dim Wleq operatornamerank(gcirc f)$.given A linear map $T:Vlongrightarrow V$, let $dim V = n$, prove that for every $kgeq n, operatornameImT^kcap ker T^k=0$.show that $operatornamerank(gcirc f) leq operatornamerank(f)+operatornamerank(g)-n$How to show that $dimker(AB) le dim ker A + dim ker B $?How to prove that if $f^2=f$ then $V= ker f + operatornameIm f$.
$begingroup$
I am struggling with an algebra problem here is what we got :
Assume we have :
$$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$
We have to show that :
$$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$
I define $H$ as :
$$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$
Now I have to prove that :
$$ ker(L) = ker(H) $$
But how can I show that :
$$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$
I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.
$$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$
How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.
Thanks.
linear-algebra
$endgroup$
add a comment |
$begingroup$
I am struggling with an algebra problem here is what we got :
Assume we have :
$$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$
We have to show that :
$$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$
I define $H$ as :
$$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$
Now I have to prove that :
$$ ker(L) = ker(H) $$
But how can I show that :
$$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$
I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.
$$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$
How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.
Thanks.
linear-algebra
$endgroup$
add a comment |
$begingroup$
I am struggling with an algebra problem here is what we got :
Assume we have :
$$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$
We have to show that :
$$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$
I define $H$ as :
$$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$
Now I have to prove that :
$$ ker(L) = ker(H) $$
But how can I show that :
$$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$
I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.
$$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$
How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.
Thanks.
linear-algebra
$endgroup$
I am struggling with an algebra problem here is what we got :
Assume we have :
$$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$
We have to show that :
$$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$
I define $H$ as :
$$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$
Now I have to prove that :
$$ ker(L) = ker(H) $$
But how can I show that :
$$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$
I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.
$$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$
How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.
Thanks.
linear-algebra
linear-algebra
edited Mar 18 at 0:45
Sangchul Lee
96.6k12173283
96.6k12173283
asked Mar 17 at 23:57
JoshuaKJoshuaK
607
607
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].
Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
$.
Then
beginalign*
dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
&= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
&quad - dim (mathrm im(mathcal KL)).
endalign*
Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
$$
dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
$$
Thus
$$
dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
$$
the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.
Hence the inequality we want to prove.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152252%2fhow-can-i-prove-that-operatornameimk-circ-l-subseteq-kerk%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].
Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
$.
Then
beginalign*
dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
&= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
&quad - dim (mathrm im(mathcal KL)).
endalign*
Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
$$
dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
$$
Thus
$$
dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
$$
the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.
Hence the inequality we want to prove.
$endgroup$
add a comment |
$begingroup$
Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].
Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
$.
Then
beginalign*
dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
&= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
&quad - dim (mathrm im(mathcal KL)).
endalign*
Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
$$
dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
$$
Thus
$$
dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
$$
the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.
Hence the inequality we want to prove.
$endgroup$
add a comment |
$begingroup$
Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].
Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
$.
Then
beginalign*
dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
&= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
&quad - dim (mathrm im(mathcal KL)).
endalign*
Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
$$
dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
$$
Thus
$$
dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
$$
the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.
Hence the inequality we want to prove.
$endgroup$
Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].
Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
$.
Then
beginalign*
dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
&= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
&quad - dim (mathrm im(mathcal KL)).
endalign*
Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
$$
dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
$$
Thus
$$
dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
$$
the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.
Hence the inequality we want to prove.
edited Mar 18 at 0:54
answered Mar 18 at 0:37
xbhxbh
6,3701522
6,3701522
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152252%2fhow-can-i-prove-that-operatornameimk-circ-l-subseteq-kerk%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown