how can I prove that $operatornameim(K circ L) subseteq ker(K)$? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why is $ker(rho-sigma)subseteqker(rho)oplusoperatornameim(sigma)$?How to prove a property of ranks: $operatornamerank(AB)= operatornamerank(B)- dim(operatornameIm B cap ker A)$$ker(T) subseteqker(S)$ implies the exist some $H$ s.t. $Hcirc T=S$Problem proving: $V = ker T oplus operatornameimT$Prove that $textrank T = operatornamerank T^2 iff operatornameImT cap ker T = vec 0$Prove that $operatornamerank (f) + operatornamerank (g) -dim Wleq operatornamerank(gcirc f)$.given A linear map $T:Vlongrightarrow V$, let $dim V = n$, prove that for every $kgeq n, operatornameImT^kcap ker T^k=0$.show that $operatornamerank(gcirc f) leq operatornamerank(f)+operatornamerank(g)-n$How to show that $dimker(AB) le dim ker A + dim ker B $?How to prove that if $f^2=f$ then $V= ker f + operatornameIm f$.

What would be the ideal power source for a cybernetic eye?

Is the Standard Deduction better than Itemized when both are the same amount?

Is there a "higher Segal conjecture"?

How to recreate this effect in Photoshop?

What makes black pepper strong or mild?

Using et al. for a last / senior author rather than for a first author

"Seemed to had" is it correct?

When is phishing education going too far?

Can inflation occur in a positive-sum game currency system such as the Stack Exchange reputation system?

How can I make names more distinctive without making them longer?

Center align columns in table ignoring minus signs?

How discoverable are IPv6 addresses and AAAA names by potential attackers?

Sorting numerically

How to bypass password on Windows XP account?

Letter Boxed validator

Single word antonym of "flightless"

Why does Python start at index -1 when indexing a list from the end?

How do I stop a creek from eroding my steep embankment?

What causes the vertical darker bands in my photo?

Right-skewed distribution with mean equals to mode?

If 'B is more likely given A', then 'A is more likely given B'

What's the purpose of writing one's academic bio in 3rd person?

Should I discuss the type of campaign with my players?

What is the longest distance a 13th-level monk can jump while attacking on the same turn?



how can I prove that $operatornameim(K circ L) subseteq ker(K)$?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why is $ker(rho-sigma)subseteqker(rho)oplusoperatornameim(sigma)$?How to prove a property of ranks: $operatornamerank(AB)= operatornamerank(B)- dim(operatornameIm B cap ker A)$$ker(T) subseteqker(S)$ implies the exist some $H$ s.t. $Hcirc T=S$Problem proving: $V = ker T oplus operatornameimT$Prove that $textrank T = operatornamerank T^2 iff operatornameImT cap ker T = vec 0$Prove that $operatornamerank (f) + operatornamerank (g) -dim Wleq operatornamerank(gcirc f)$.given A linear map $T:Vlongrightarrow V$, let $dim V = n$, prove that for every $kgeq n, operatornameImT^kcap ker T^k=0$.show that $operatornamerank(gcirc f) leq operatornamerank(f)+operatornamerank(g)-n$How to show that $dimker(AB) le dim ker A + dim ker B $?How to prove that if $f^2=f$ then $V= ker f + operatornameIm f$.










1












$begingroup$


I am struggling with an algebra problem here is what we got :



Assume we have :



$$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$



We have to show that :



$$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$



I define $H$ as :



$$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$



Now I have to prove that :



$$ ker(L) = ker(H) $$



But how can I show that :



$$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$



I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.



$$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$



How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.



Thanks.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I am struggling with an algebra problem here is what we got :



    Assume we have :



    $$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$



    We have to show that :



    $$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$



    I define $H$ as :



    $$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$



    Now I have to prove that :



    $$ ker(L) = ker(H) $$



    But how can I show that :



    $$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$



    I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.



    $$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$



    How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.



    Thanks.










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      I am struggling with an algebra problem here is what we got :



      Assume we have :



      $$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$



      We have to show that :



      $$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$



      I define $H$ as :



      $$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$



      Now I have to prove that :



      $$ ker(L) = ker(H) $$



      But how can I show that :



      $$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$



      I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.



      $$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$



      How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.



      Thanks.










      share|cite|improve this question











      $endgroup$




      I am struggling with an algebra problem here is what we got :



      Assume we have :



      $$L : E_0 to E_1 quadtextandquad K : E_1 to E_2 $$



      We have to show that :



      $$dim(ker(K circ L)) leq dim(ker(L)) + dim(ker(K)).$$



      I define $H$ as :



      $$H : ker(K circ L) to E_2, qquad H(v) = L(v) quad textfor quad v ∈ ker(K circ L)$$



      Now I have to prove that :



      $$ ker(L) = ker(H) $$



      But how can I show that :



      $$Rightarrow qquad ker(L) subseteq ker(K circ L) quad textand quad ker(K circ L) subseteq ker(L) quad ?$$



      I got an idea for this one : $L(v) = 0$ implies $K(L(v)) = 0$ ... But I stuck with this one.



      $$ Rightarrow qquad operatornameim(H) subseteq ker(K) quad ? $$



      How can I prove? I only know and prove that $operatornameim(Kcirc L) subseteq operatornameim(K)$.



      Thanks.







      linear-algebra






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 18 at 0:45









      Sangchul Lee

      96.6k12173283




      96.6k12173283










      asked Mar 17 at 23:57









      JoshuaKJoshuaK

      607




      607




















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].



          Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
          dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
          $
          .



          Then
          beginalign*
          dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
          &= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
          &quad - dim (mathrm im(mathcal KL)).
          endalign*



          Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
          $$
          dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
          $$

          Thus
          $$
          dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
          $$

          the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.



          Hence the inequality we want to prove.






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152252%2fhow-can-i-prove-that-operatornameimk-circ-l-subseteq-kerk%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].



            Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
            dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
            $
            .



            Then
            beginalign*
            dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
            &= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
            &quad - dim (mathrm im(mathcal KL)).
            endalign*



            Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
            $$
            dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
            $$

            Thus
            $$
            dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
            $$

            the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.



            Hence the inequality we want to prove.






            share|cite|improve this answer











            $endgroup$

















              0












              $begingroup$

              Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].



              Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
              dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
              $
              .



              Then
              beginalign*
              dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
              &= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
              &quad - dim (mathrm im(mathcal KL)).
              endalign*



              Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
              $$
              dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
              $$

              Thus
              $$
              dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
              $$

              the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.



              Hence the inequality we want to prove.






              share|cite|improve this answer











              $endgroup$















                0












                0








                0





                $begingroup$

                Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].



                Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
                dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
                $
                .



                Then
                beginalign*
                dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
                &= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
                &quad - dim (mathrm im(mathcal KL)).
                endalign*



                Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
                $$
                dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
                $$

                Thus
                $$
                dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
                $$

                the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.



                Hence the inequality we want to prove.






                share|cite|improve this answer











                $endgroup$



                Generally you cannot show that $ker (mathcal KL) = ker mathcal L$: if $mathcal Kv =0$ for all $v in E_1$, where $E_1 neq 0$, and $mathcal L$ surjective, then $ker(mathcal KL) = E_0$ but $ker mathcal Lsubsetneq E_0$ [otherwise $mathcal L$ would not be surjective: some $v in E_1 setminus 0$ cannot be mapped by $mathcal L$].



                Assume $dim(E_0) = n <+infty$. By the Rank-Nullity Theorem, $ dim(ker mathcal L)+ dim(mathrm im, mathcal L) = n$, also $
                dim(ker (mathcal KL)) + dim(mathrm im (mathcal KL)) =n
                $
                .



                Then
                beginalign*
                dim(ker (mathcal KL)) &= n - dim (mathrm im (mathcal KL))\
                &= dim (ker mathcal L) + dim(mathrm im (mathcal L )) \
                &quad - dim (mathrm im(mathcal KL)).
                endalign*



                Note that the mapping $mathcal Kvert _mathrm im,mathcal L colon mathrm im, mathcal L to E_2$ is a linear mapping, and we could know that $mathrm im(mathcal Kvert _mathrm im, mathcal L) = mathrm im (mathcal KL)$: $z in mathrm im (mathcal Kvert _mathrm im ,mathcal L) iff exists y in mathrm im, mathcal L, mathcal Ky = z iff exists x in E_0, y = mathcal Lx, z = mathcal Ky iff exists x in E_0, z = mathcal KLx$. So again by the Rank-Nullity Theorem,
                $$
                dim (mathrm im, mathcal L) = dim(ker (mathcal Kvert _mathrm im,mathcal L)) + dim (mathrm im(mathcal KL)).
                $$

                Thus
                $$
                dim (mathrm im, mathcal L) - dim (mathrm im(mathcal KL)) =dim(ker (mathcal Kvert _mathrm im,mathcal L)) leqslant dim (ker mathcal K),
                $$

                the $leqslant$ holds because $mathrm im ,mathcal L subset E_1$, and possibly there is some $y in (E_1setminus mathrm im, mathcal L)$ that $mathcal Ky = 0$.



                Hence the inequality we want to prove.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 18 at 0:54

























                answered Mar 18 at 0:37









                xbhxbh

                6,3701522




                6,3701522



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152252%2fhow-can-i-prove-that-operatornameimk-circ-l-subseteq-kerk%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                    Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε