How to think about vector fields(Non-)Conservative Vector FieldsNegative Divergence of Radial Vector Fields?Is zero vector potential for Helmholtz decomposition of curl and divergence free vector fields necessary?Generalized forms of Curl and DivergenceThe missing vector derivative operationdivergence free vector fields on non-simply connected domainsRelationship between Möbius transformations and flows/vector fieldsA vector field orthogonal to it's curl at every pointAnalog of fluid mass in electrostaticsFind geometric interpretation of differential operators in vector fields.

What are these boxed doors outside store fronts in New York?

Email Account under attack (really) - anything I can do?

Patience, young "Padovan"

How is this relation reflexive?

Is it possible to do 50 km distance without any previous training?

A function which translates a sentence to title-case

What is the meaning of "of trouble" in the following sentence?

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

Why was the small council so happy for Tyrion to become the Master of Coin?

How does one intimidate enemies without having the capacity for violence?

What makes Graph invariants so useful/important?

Why don't electron-positron collisions release infinite energy?

My colleague's body is amazing

Download, install and reboot computer at night if needed

Infinite past with a beginning?

What would happen to a modern skyscraper if it rains micro blackholes?

How old can references or sources in a thesis be?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Can a German sentence have two subjects?

What would the Romans have called "sorcery"?

Banach space and Hilbert space topology

Is there really no realistic way for a skeleton monster to move around without magic?

A Journey Through Space and Time

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?



How to think about vector fields


(Non-)Conservative Vector FieldsNegative Divergence of Radial Vector Fields?Is zero vector potential for Helmholtz decomposition of curl and divergence free vector fields necessary?Generalized forms of Curl and DivergenceThe missing vector derivative operationdivergence free vector fields on non-simply connected domainsRelationship between Möbius transformations and flows/vector fieldsA vector field orthogonal to it's curl at every pointAnalog of fluid mass in electrostaticsFind geometric interpretation of differential operators in vector fields.













0












$begingroup$


How do you imagine vector fields in a "physical" way? I'm learning vector calculus, and most of the analogies break down:



  • If I imagine the vector field as some sort of fluid flow, then if it's incompressible then the divergence is clearly zero everywhere. But for most vector fields the divergence is not zero, and I find compressible fluids very counterintuitive.


  • If I imagine them as electric field of some configuration of charges, but then not all vector fields corresponds to the electric field of a configuration of charges (eg the field $f(x,y) = x hati + y hatj$), so those fields are again counterintuitive.


Which way should I think about them so that things like divergence/curl become obvious and the analogy doesn't break down for some cases?










share|cite|improve this question











$endgroup$











  • $begingroup$
    PS: What are some good books to learnt the necessary multivariable calculus rigorously (not skipping the proof of eg Green's theorem) as quickly as possible for complex analysis background ? The first chapter of Griffiths EM contains some nice intuition but sadly totally devoid of proofs.
    $endgroup$
    – Chebotarev Density
    Mar 29 at 21:50






  • 1




    $begingroup$
    Another book I like a lot, not nearly as rigorous, is "Div, grad, curl, and all that: an informal text on vector calculus"
    $endgroup$
    – Don Thousand
    Mar 29 at 21:52







  • 2




    $begingroup$
    Spivak’s “calculus on manifolds” is a masterpiece.
    $endgroup$
    – Ittay Weiss
    Mar 29 at 21:53






  • 1




    $begingroup$
    So you are comfortable with two types of vector fields: divergence-free (incompressible fluids) and curl-free (potentials). Now smooth vector fields are the sum of a divergence-free part and a curl-free part, so it behaves like a fluid plus a potential.
    $endgroup$
    – Chrystomath
    Mar 30 at 9:10






  • 1




    $begingroup$
    @Chrystomath Isn't potential a scalar field ?
    $endgroup$
    – Chebotarev Density
    Mar 30 at 12:21















0












$begingroup$


How do you imagine vector fields in a "physical" way? I'm learning vector calculus, and most of the analogies break down:



  • If I imagine the vector field as some sort of fluid flow, then if it's incompressible then the divergence is clearly zero everywhere. But for most vector fields the divergence is not zero, and I find compressible fluids very counterintuitive.


  • If I imagine them as electric field of some configuration of charges, but then not all vector fields corresponds to the electric field of a configuration of charges (eg the field $f(x,y) = x hati + y hatj$), so those fields are again counterintuitive.


Which way should I think about them so that things like divergence/curl become obvious and the analogy doesn't break down for some cases?










share|cite|improve this question











$endgroup$











  • $begingroup$
    PS: What are some good books to learnt the necessary multivariable calculus rigorously (not skipping the proof of eg Green's theorem) as quickly as possible for complex analysis background ? The first chapter of Griffiths EM contains some nice intuition but sadly totally devoid of proofs.
    $endgroup$
    – Chebotarev Density
    Mar 29 at 21:50






  • 1




    $begingroup$
    Another book I like a lot, not nearly as rigorous, is "Div, grad, curl, and all that: an informal text on vector calculus"
    $endgroup$
    – Don Thousand
    Mar 29 at 21:52







  • 2




    $begingroup$
    Spivak’s “calculus on manifolds” is a masterpiece.
    $endgroup$
    – Ittay Weiss
    Mar 29 at 21:53






  • 1




    $begingroup$
    So you are comfortable with two types of vector fields: divergence-free (incompressible fluids) and curl-free (potentials). Now smooth vector fields are the sum of a divergence-free part and a curl-free part, so it behaves like a fluid plus a potential.
    $endgroup$
    – Chrystomath
    Mar 30 at 9:10






  • 1




    $begingroup$
    @Chrystomath Isn't potential a scalar field ?
    $endgroup$
    – Chebotarev Density
    Mar 30 at 12:21













0












0








0


1



$begingroup$


How do you imagine vector fields in a "physical" way? I'm learning vector calculus, and most of the analogies break down:



  • If I imagine the vector field as some sort of fluid flow, then if it's incompressible then the divergence is clearly zero everywhere. But for most vector fields the divergence is not zero, and I find compressible fluids very counterintuitive.


  • If I imagine them as electric field of some configuration of charges, but then not all vector fields corresponds to the electric field of a configuration of charges (eg the field $f(x,y) = x hati + y hatj$), so those fields are again counterintuitive.


Which way should I think about them so that things like divergence/curl become obvious and the analogy doesn't break down for some cases?










share|cite|improve this question











$endgroup$




How do you imagine vector fields in a "physical" way? I'm learning vector calculus, and most of the analogies break down:



  • If I imagine the vector field as some sort of fluid flow, then if it's incompressible then the divergence is clearly zero everywhere. But for most vector fields the divergence is not zero, and I find compressible fluids very counterintuitive.


  • If I imagine them as electric field of some configuration of charges, but then not all vector fields corresponds to the electric field of a configuration of charges (eg the field $f(x,y) = x hati + y hatj$), so those fields are again counterintuitive.


Which way should I think about them so that things like divergence/curl become obvious and the analogy doesn't break down for some cases?







calculus multivariable-calculus vector-analysis intuition






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 29 at 21:54









Don Thousand

4,574734




4,574734










asked Mar 29 at 21:49









Chebotarev DensityChebotarev Density

695521




695521











  • $begingroup$
    PS: What are some good books to learnt the necessary multivariable calculus rigorously (not skipping the proof of eg Green's theorem) as quickly as possible for complex analysis background ? The first chapter of Griffiths EM contains some nice intuition but sadly totally devoid of proofs.
    $endgroup$
    – Chebotarev Density
    Mar 29 at 21:50






  • 1




    $begingroup$
    Another book I like a lot, not nearly as rigorous, is "Div, grad, curl, and all that: an informal text on vector calculus"
    $endgroup$
    – Don Thousand
    Mar 29 at 21:52







  • 2




    $begingroup$
    Spivak’s “calculus on manifolds” is a masterpiece.
    $endgroup$
    – Ittay Weiss
    Mar 29 at 21:53






  • 1




    $begingroup$
    So you are comfortable with two types of vector fields: divergence-free (incompressible fluids) and curl-free (potentials). Now smooth vector fields are the sum of a divergence-free part and a curl-free part, so it behaves like a fluid plus a potential.
    $endgroup$
    – Chrystomath
    Mar 30 at 9:10






  • 1




    $begingroup$
    @Chrystomath Isn't potential a scalar field ?
    $endgroup$
    – Chebotarev Density
    Mar 30 at 12:21
















  • $begingroup$
    PS: What are some good books to learnt the necessary multivariable calculus rigorously (not skipping the proof of eg Green's theorem) as quickly as possible for complex analysis background ? The first chapter of Griffiths EM contains some nice intuition but sadly totally devoid of proofs.
    $endgroup$
    – Chebotarev Density
    Mar 29 at 21:50






  • 1




    $begingroup$
    Another book I like a lot, not nearly as rigorous, is "Div, grad, curl, and all that: an informal text on vector calculus"
    $endgroup$
    – Don Thousand
    Mar 29 at 21:52







  • 2




    $begingroup$
    Spivak’s “calculus on manifolds” is a masterpiece.
    $endgroup$
    – Ittay Weiss
    Mar 29 at 21:53






  • 1




    $begingroup$
    So you are comfortable with two types of vector fields: divergence-free (incompressible fluids) and curl-free (potentials). Now smooth vector fields are the sum of a divergence-free part and a curl-free part, so it behaves like a fluid plus a potential.
    $endgroup$
    – Chrystomath
    Mar 30 at 9:10






  • 1




    $begingroup$
    @Chrystomath Isn't potential a scalar field ?
    $endgroup$
    – Chebotarev Density
    Mar 30 at 12:21















$begingroup$
PS: What are some good books to learnt the necessary multivariable calculus rigorously (not skipping the proof of eg Green's theorem) as quickly as possible for complex analysis background ? The first chapter of Griffiths EM contains some nice intuition but sadly totally devoid of proofs.
$endgroup$
– Chebotarev Density
Mar 29 at 21:50




$begingroup$
PS: What are some good books to learnt the necessary multivariable calculus rigorously (not skipping the proof of eg Green's theorem) as quickly as possible for complex analysis background ? The first chapter of Griffiths EM contains some nice intuition but sadly totally devoid of proofs.
$endgroup$
– Chebotarev Density
Mar 29 at 21:50




1




1




$begingroup$
Another book I like a lot, not nearly as rigorous, is "Div, grad, curl, and all that: an informal text on vector calculus"
$endgroup$
– Don Thousand
Mar 29 at 21:52





$begingroup$
Another book I like a lot, not nearly as rigorous, is "Div, grad, curl, and all that: an informal text on vector calculus"
$endgroup$
– Don Thousand
Mar 29 at 21:52





2




2




$begingroup$
Spivak’s “calculus on manifolds” is a masterpiece.
$endgroup$
– Ittay Weiss
Mar 29 at 21:53




$begingroup$
Spivak’s “calculus on manifolds” is a masterpiece.
$endgroup$
– Ittay Weiss
Mar 29 at 21:53




1




1




$begingroup$
So you are comfortable with two types of vector fields: divergence-free (incompressible fluids) and curl-free (potentials). Now smooth vector fields are the sum of a divergence-free part and a curl-free part, so it behaves like a fluid plus a potential.
$endgroup$
– Chrystomath
Mar 30 at 9:10




$begingroup$
So you are comfortable with two types of vector fields: divergence-free (incompressible fluids) and curl-free (potentials). Now smooth vector fields are the sum of a divergence-free part and a curl-free part, so it behaves like a fluid plus a potential.
$endgroup$
– Chrystomath
Mar 30 at 9:10




1




1




$begingroup$
@Chrystomath Isn't potential a scalar field ?
$endgroup$
– Chebotarev Density
Mar 30 at 12:21




$begingroup$
@Chrystomath Isn't potential a scalar field ?
$endgroup$
– Chebotarev Density
Mar 30 at 12:21










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167661%2fhow-to-think-about-vector-fields%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167661%2fhow-to-think-about-vector-fields%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε