For complex function : $f'(z)$ exists $implies$ $f$ continous in $z$?Singularity structure of function in the complex plane.Does every continuous function have a left and right derivative?Curves Bounding Complex FunctionA question regarding complex valued functionDifferentiation and continous functionsDifferences between the complex derivative and the multivariable derivative.Continuity of complex difference quotientFunction limiting its own derivative implies implies null functionIf $f$ is a complex function with constant derivativeDifferential Equations Proof for Equilibrium
How can bays and straits be determined in a procedurally generated map?
Simulate Bitwise Cyclic Tag
What typically incentivizes a professor to change jobs to a lower ranking university?
What Brexit solution does the DUP want?
Why is "Reports" in sentence down without "The"
What do you call a Matrix-like slowdown and camera movement effect?
How to make payment on the internet without leaving a money trail?
Is there really no realistic way for a skeleton monster to move around without magic?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
How does one intimidate enemies without having the capacity for violence?
Set-theoretical foundations of Mathematics with only bounded quantifiers
Download, install and reboot computer at night if needed
Schwarzchild Radius of the Universe
I see my dog run
What is the offset in a seaplane's hull?
How to report a triplet of septets in NMR tabulation?
Is it possible to do 50 km distance without any previous training?
What is the meaning of "of trouble" in the following sentence?
A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
Banach space and Hilbert space topology
Shell script can be run only with sh command
How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)
For complex function : $f'(z)$ exists $implies$ $f$ continous in $z$?
Singularity structure of function in the complex plane.Does every continuous function have a left and right derivative?Curves Bounding Complex FunctionA question regarding complex valued functionDifferentiation and continous functionsDifferences between the complex derivative and the multivariable derivative.Continuity of complex difference quotientFunction limiting its own derivative implies implies null functionIf $f$ is a complex function with constant derivativeDifferential Equations Proof for Equilibrium
$begingroup$
Consider a complex function $f(z): Asubsetmathbb C tomathbb C$.
If the derivative of $f$ exists then $f$ must necessarily be a continuous function?
Is the following true? $f'(z)$ exists $implies$ $f$ continuous in $z$
complex-analysis functions derivatives complex-numbers continuity
$endgroup$
add a comment |
$begingroup$
Consider a complex function $f(z): Asubsetmathbb C tomathbb C$.
If the derivative of $f$ exists then $f$ must necessarily be a continuous function?
Is the following true? $f'(z)$ exists $implies$ $f$ continuous in $z$
complex-analysis functions derivatives complex-numbers continuity
$endgroup$
5
$begingroup$
Yes, it is true.
$endgroup$
– Mark Viola
Mar 29 at 22:06
$begingroup$
To go a step further, not only is it continuous, it is analytic.
$endgroup$
– Clayton
Mar 29 at 22:13
1
$begingroup$
You can prove it directly from the definition of a derivative. Just consider $fracf(z+h)-f(z)hcdot h$ . You do it just like for the functions of real variable.
$endgroup$
– Jakobian
Mar 29 at 22:14
add a comment |
$begingroup$
Consider a complex function $f(z): Asubsetmathbb C tomathbb C$.
If the derivative of $f$ exists then $f$ must necessarily be a continuous function?
Is the following true? $f'(z)$ exists $implies$ $f$ continuous in $z$
complex-analysis functions derivatives complex-numbers continuity
$endgroup$
Consider a complex function $f(z): Asubsetmathbb C tomathbb C$.
If the derivative of $f$ exists then $f$ must necessarily be a continuous function?
Is the following true? $f'(z)$ exists $implies$ $f$ continuous in $z$
complex-analysis functions derivatives complex-numbers continuity
complex-analysis functions derivatives complex-numbers continuity
edited Mar 29 at 22:11
blub
3,241829
3,241829
asked Mar 29 at 22:04
SørënSørën
1059
1059
5
$begingroup$
Yes, it is true.
$endgroup$
– Mark Viola
Mar 29 at 22:06
$begingroup$
To go a step further, not only is it continuous, it is analytic.
$endgroup$
– Clayton
Mar 29 at 22:13
1
$begingroup$
You can prove it directly from the definition of a derivative. Just consider $fracf(z+h)-f(z)hcdot h$ . You do it just like for the functions of real variable.
$endgroup$
– Jakobian
Mar 29 at 22:14
add a comment |
5
$begingroup$
Yes, it is true.
$endgroup$
– Mark Viola
Mar 29 at 22:06
$begingroup$
To go a step further, not only is it continuous, it is analytic.
$endgroup$
– Clayton
Mar 29 at 22:13
1
$begingroup$
You can prove it directly from the definition of a derivative. Just consider $fracf(z+h)-f(z)hcdot h$ . You do it just like for the functions of real variable.
$endgroup$
– Jakobian
Mar 29 at 22:14
5
5
$begingroup$
Yes, it is true.
$endgroup$
– Mark Viola
Mar 29 at 22:06
$begingroup$
Yes, it is true.
$endgroup$
– Mark Viola
Mar 29 at 22:06
$begingroup$
To go a step further, not only is it continuous, it is analytic.
$endgroup$
– Clayton
Mar 29 at 22:13
$begingroup$
To go a step further, not only is it continuous, it is analytic.
$endgroup$
– Clayton
Mar 29 at 22:13
1
1
$begingroup$
You can prove it directly from the definition of a derivative. Just consider $fracf(z+h)-f(z)hcdot h$ . You do it just like for the functions of real variable.
$endgroup$
– Jakobian
Mar 29 at 22:14
$begingroup$
You can prove it directly from the definition of a derivative. Just consider $fracf(z+h)-f(z)hcdot h$ . You do it just like for the functions of real variable.
$endgroup$
– Jakobian
Mar 29 at 22:14
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A quick proof: Let $f:Atomathbb C$ and let $z_0in A$ be an accumulation point of $A$. Suppose $f'(z_0)$ exists, i.e. the limit
$$lim_zto z_0fracf(z)-f(z_0)z-z_0=L$$
exists and $Linmathbb C$. Then we have
$$lim_zto z_0f(z)-f(z_0)=lim_zto z_0(f(z)-f(z_0))=lim_zto z_0fracf(z)-f(z_0)z-z_0(z-z_0)=f'(z_0)cdot 0=0$$
Thus, $lim_zto z_0f(z)=f(z_0)$ and $f$ is continuous in $z_0$.
$endgroup$
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
1
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167676%2ffor-complex-function-fz-exists-implies-f-continous-in-z%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A quick proof: Let $f:Atomathbb C$ and let $z_0in A$ be an accumulation point of $A$. Suppose $f'(z_0)$ exists, i.e. the limit
$$lim_zto z_0fracf(z)-f(z_0)z-z_0=L$$
exists and $Linmathbb C$. Then we have
$$lim_zto z_0f(z)-f(z_0)=lim_zto z_0(f(z)-f(z_0))=lim_zto z_0fracf(z)-f(z_0)z-z_0(z-z_0)=f'(z_0)cdot 0=0$$
Thus, $lim_zto z_0f(z)=f(z_0)$ and $f$ is continuous in $z_0$.
$endgroup$
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
1
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
|
show 2 more comments
$begingroup$
A quick proof: Let $f:Atomathbb C$ and let $z_0in A$ be an accumulation point of $A$. Suppose $f'(z_0)$ exists, i.e. the limit
$$lim_zto z_0fracf(z)-f(z_0)z-z_0=L$$
exists and $Linmathbb C$. Then we have
$$lim_zto z_0f(z)-f(z_0)=lim_zto z_0(f(z)-f(z_0))=lim_zto z_0fracf(z)-f(z_0)z-z_0(z-z_0)=f'(z_0)cdot 0=0$$
Thus, $lim_zto z_0f(z)=f(z_0)$ and $f$ is continuous in $z_0$.
$endgroup$
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
1
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
|
show 2 more comments
$begingroup$
A quick proof: Let $f:Atomathbb C$ and let $z_0in A$ be an accumulation point of $A$. Suppose $f'(z_0)$ exists, i.e. the limit
$$lim_zto z_0fracf(z)-f(z_0)z-z_0=L$$
exists and $Linmathbb C$. Then we have
$$lim_zto z_0f(z)-f(z_0)=lim_zto z_0(f(z)-f(z_0))=lim_zto z_0fracf(z)-f(z_0)z-z_0(z-z_0)=f'(z_0)cdot 0=0$$
Thus, $lim_zto z_0f(z)=f(z_0)$ and $f$ is continuous in $z_0$.
$endgroup$
A quick proof: Let $f:Atomathbb C$ and let $z_0in A$ be an accumulation point of $A$. Suppose $f'(z_0)$ exists, i.e. the limit
$$lim_zto z_0fracf(z)-f(z_0)z-z_0=L$$
exists and $Linmathbb C$. Then we have
$$lim_zto z_0f(z)-f(z_0)=lim_zto z_0(f(z)-f(z_0))=lim_zto z_0fracf(z)-f(z_0)z-z_0(z-z_0)=f'(z_0)cdot 0=0$$
Thus, $lim_zto z_0f(z)=f(z_0)$ and $f$ is continuous in $z_0$.
edited Mar 29 at 22:50
answered Mar 29 at 22:17
blubblub
3,241829
3,241829
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
1
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
|
show 2 more comments
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
1
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
$begingroup$
Albeit subtle, the assumption should be that the limit exists and is finite. Also, you repeated $lim_zto z_0(f(z)-f(z_0))$ twice although there were missing outer parentheses in the first occurrence (perhaps this is something you intended). Lastly, the proof relies on the theorem that the limit of a product of complex functions equals the product of the limits (when both limits exist and are finite) of the complex functions.
$endgroup$
– Mark Viola
Mar 29 at 22:27
1
1
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
@MarkViola With "the limit exists" I mean that the limit is a member in the considered space, e.g. a real or complex number. Also, this is not a repetition, but the limit expression is meant to be read as any unary connective, i.e. for $lim_zto z_0f(z)=L$, the expression $lim_zto z_0f(z)-f(z_0)$ means $L-f(z_0)$. Lastly, I agree the proof relies on the properties of limits that the distribute over products and sums, if the corresponding inner limits exist.
$endgroup$
– blub
Mar 29 at 22:31
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
Why would $A$ be open though. It would suffice if $z_0$ would be an accumulation point of $A$
$endgroup$
– Jakobian
Mar 29 at 22:34
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
@Jakobian Indeed it would, out of habit I just projected my usual setting on the answer. But I'll edit that in thanks for the remark.
$endgroup$
– blub
Mar 29 at 22:35
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
$begingroup$
I agree with the first point, but you might just consider making it explicit just to tighten things a bit. As for the second point, I had commented parenthetically that you might have intended this step.
$endgroup$
– Mark Viola
Mar 29 at 22:47
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167676%2ffor-complex-function-fz-exists-implies-f-continous-in-z%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
Yes, it is true.
$endgroup$
– Mark Viola
Mar 29 at 22:06
$begingroup$
To go a step further, not only is it continuous, it is analytic.
$endgroup$
– Clayton
Mar 29 at 22:13
1
$begingroup$
You can prove it directly from the definition of a derivative. Just consider $fracf(z+h)-f(z)hcdot h$ . You do it just like for the functions of real variable.
$endgroup$
– Jakobian
Mar 29 at 22:14