Dimension of the invariant subspaceDimension of Hom(U, V)Invariant polynomials over symmetric matrices under Euclidean transformationsIs the ring of polynomial invariants of a finite perfect group an UFD?Invariants of finite groupsDoes the invariant ring determine the group?Reference request: invariant theoryInvariant polynomials under an $S_4$-actionFind irreducible representations of semidirect product $(S_2 times S_2) rtimes S_2$Explicitly finding a quotient of two polynomial spacesOn the Definition of the Reynolds Operator.

What would the Romans have called "sorcery"?

Is it possible to do 50 km distance without any previous training?

If Manufacturer spice model and Datasheet give different values which should I use?

Is it possible to make sharp wind that can cut stuff from afar?

What typically incentivizes a professor to change jobs to a lower ranking university?

Patience, young "Padovan"

What is the offset in a seaplane's hull?

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

Motorized valve interfering with button?

How can I fix this gap between bookcases I made?

How can bays and straits be determined in a procedurally generated map?

Pronouncing Dictionary.com's W.O.D "vade mecum" in English

"which" command doesn't work / path of Safari?

Prevent a directory in /tmp from being deleted

A Journey Through Space and Time

Download, install and reboot computer at night if needed

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Validation accuracy vs Testing accuracy

How do you conduct xenoanthropology after first contact?

I see my dog run

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

Copenhagen passport control - US citizen

Why is this code 6.5x slower with optimizations enabled?

Simulate Bitwise Cyclic Tag



Dimension of the invariant subspace


Dimension of Hom(U, V)Invariant polynomials over symmetric matrices under Euclidean transformationsIs the ring of polynomial invariants of a finite perfect group an UFD?Invariants of finite groupsDoes the invariant ring determine the group?Reference request: invariant theoryInvariant polynomials under an $S_4$-actionFind irreducible representations of semidirect product $(S_2 times S_2) rtimes S_2$Explicitly finding a quotient of two polynomial spacesOn the Definition of the Reynolds Operator.













4












$begingroup$


Let $Gamma subseteq GL_n(mathbbC)$ be a finite matrix group. Let this finite matrix group act on $f(x_1,...,x_n) in mathbbC[x_1,...,x_n]$ like so: $$Gamma cdot f(x_1,...,x_n) = f(Gamma textbfx)$$ where $textbfx$ is to be thought of as the column vector of the variables $x_1,...,x_n$.



Define the invariant subspace $mathbbC[x_1,...,x_n]^Gamma = f in mathbbC[x_1,...,x_n] : A cdot f = f hspace2mm forall hspace2mm A in Gamma$.



Now, define the Reynold's operator $R_Gamma : mathbbC[x_1,...,x_n] rightarrow mathbbC[x_1,...,x_n]$ by: $$R_Gamma (f)(textbfx) = frac1 sum_A in Gamma f(A textbfx)$$



Now, the number of linearly independent invariants of $Gamma$ of degree $1$ is given by $$a_1 = frac1 sum_A in Gamma trace(A)$$ But I'm not sure why this is so? I know that $R_Gamma$ is projection on to $mathbbC[x_1,...,x_n]$ and $im(R_Gamma) = mathbbC[x_1,...,x_n]^Gamma$, and so this would imply that $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^Gamma)$, but where do I go from here? What is the trace of this Reynold's Operator?



I'm not even sure if I'm going in the right direction here, because I'm not sure why this $dim(mathbbC[x_1,...,x_n]^Gamma)$ would even give the number of linearly independent invariants of $Gamma$ of degree $1$. Where does the degree $1$ bit come from?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The left action of a $gamma$ on $f$ is $gamma cdot f(textbfx )= f(gamma^-1 textbfx)$. Otherwise it is a right-action.
    $endgroup$
    – AlexL
    Mar 29 at 23:12






  • 1




    $begingroup$
    If $R_Gamma$ is a projection, then its restriction $r_Gamma : mathbbC_leqslant 1[textbfx] to mathbbC_leqslant 1[textbfx]$ (the polynomials of degree $leqslant 1$) is the projection on $mathbbC_leqslant 1[textbfx]^Gamma$ and $a_1=dim(mathbbC_leqslant 1[textbfx]^Gamma)=rk(r_Gamma)=trace(r_Gamma)$. To calcultate $trace(r_Gamma)$, use the basis $(x_1,cdots,x_n)$ of $mathbbC_leqslant 1[textbfx]$. It should lead you to the result
    $endgroup$
    – AlexL
    Mar 29 at 23:12











  • $begingroup$
    How do you mean use the basis?
    $endgroup$
    – the man
    Mar 29 at 23:49










  • $begingroup$
    Also, in all the literature I’ve read, when discussing invariance, they let a matrix $M$ act on a polynomial $f(x_1,...,x_n)$ as $M cdot f(x_1,...,x_n) = f(M textbfx)$?
    $endgroup$
    – the man
    Mar 29 at 23:57










  • $begingroup$
    @theman Try computing $MNcdot f$ and $Mcdot (Ncdot f)$ with that definition. You'll notice that $(MNcdot f)x=f(MNx)$, whereas $(Mcdot (Ncdot f))x=(Ncdot f)(Mx)=f(NMx)$. These are not equal.
    $endgroup$
    – jgon
    Mar 30 at 0:04















4












$begingroup$


Let $Gamma subseteq GL_n(mathbbC)$ be a finite matrix group. Let this finite matrix group act on $f(x_1,...,x_n) in mathbbC[x_1,...,x_n]$ like so: $$Gamma cdot f(x_1,...,x_n) = f(Gamma textbfx)$$ where $textbfx$ is to be thought of as the column vector of the variables $x_1,...,x_n$.



Define the invariant subspace $mathbbC[x_1,...,x_n]^Gamma = f in mathbbC[x_1,...,x_n] : A cdot f = f hspace2mm forall hspace2mm A in Gamma$.



Now, define the Reynold's operator $R_Gamma : mathbbC[x_1,...,x_n] rightarrow mathbbC[x_1,...,x_n]$ by: $$R_Gamma (f)(textbfx) = frac1 sum_A in Gamma f(A textbfx)$$



Now, the number of linearly independent invariants of $Gamma$ of degree $1$ is given by $$a_1 = frac1 sum_A in Gamma trace(A)$$ But I'm not sure why this is so? I know that $R_Gamma$ is projection on to $mathbbC[x_1,...,x_n]$ and $im(R_Gamma) = mathbbC[x_1,...,x_n]^Gamma$, and so this would imply that $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^Gamma)$, but where do I go from here? What is the trace of this Reynold's Operator?



I'm not even sure if I'm going in the right direction here, because I'm not sure why this $dim(mathbbC[x_1,...,x_n]^Gamma)$ would even give the number of linearly independent invariants of $Gamma$ of degree $1$. Where does the degree $1$ bit come from?










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    The left action of a $gamma$ on $f$ is $gamma cdot f(textbfx )= f(gamma^-1 textbfx)$. Otherwise it is a right-action.
    $endgroup$
    – AlexL
    Mar 29 at 23:12






  • 1




    $begingroup$
    If $R_Gamma$ is a projection, then its restriction $r_Gamma : mathbbC_leqslant 1[textbfx] to mathbbC_leqslant 1[textbfx]$ (the polynomials of degree $leqslant 1$) is the projection on $mathbbC_leqslant 1[textbfx]^Gamma$ and $a_1=dim(mathbbC_leqslant 1[textbfx]^Gamma)=rk(r_Gamma)=trace(r_Gamma)$. To calcultate $trace(r_Gamma)$, use the basis $(x_1,cdots,x_n)$ of $mathbbC_leqslant 1[textbfx]$. It should lead you to the result
    $endgroup$
    – AlexL
    Mar 29 at 23:12











  • $begingroup$
    How do you mean use the basis?
    $endgroup$
    – the man
    Mar 29 at 23:49










  • $begingroup$
    Also, in all the literature I’ve read, when discussing invariance, they let a matrix $M$ act on a polynomial $f(x_1,...,x_n)$ as $M cdot f(x_1,...,x_n) = f(M textbfx)$?
    $endgroup$
    – the man
    Mar 29 at 23:57










  • $begingroup$
    @theman Try computing $MNcdot f$ and $Mcdot (Ncdot f)$ with that definition. You'll notice that $(MNcdot f)x=f(MNx)$, whereas $(Mcdot (Ncdot f))x=(Ncdot f)(Mx)=f(NMx)$. These are not equal.
    $endgroup$
    – jgon
    Mar 30 at 0:04













4












4








4


1



$begingroup$


Let $Gamma subseteq GL_n(mathbbC)$ be a finite matrix group. Let this finite matrix group act on $f(x_1,...,x_n) in mathbbC[x_1,...,x_n]$ like so: $$Gamma cdot f(x_1,...,x_n) = f(Gamma textbfx)$$ where $textbfx$ is to be thought of as the column vector of the variables $x_1,...,x_n$.



Define the invariant subspace $mathbbC[x_1,...,x_n]^Gamma = f in mathbbC[x_1,...,x_n] : A cdot f = f hspace2mm forall hspace2mm A in Gamma$.



Now, define the Reynold's operator $R_Gamma : mathbbC[x_1,...,x_n] rightarrow mathbbC[x_1,...,x_n]$ by: $$R_Gamma (f)(textbfx) = frac1 sum_A in Gamma f(A textbfx)$$



Now, the number of linearly independent invariants of $Gamma$ of degree $1$ is given by $$a_1 = frac1 sum_A in Gamma trace(A)$$ But I'm not sure why this is so? I know that $R_Gamma$ is projection on to $mathbbC[x_1,...,x_n]$ and $im(R_Gamma) = mathbbC[x_1,...,x_n]^Gamma$, and so this would imply that $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^Gamma)$, but where do I go from here? What is the trace of this Reynold's Operator?



I'm not even sure if I'm going in the right direction here, because I'm not sure why this $dim(mathbbC[x_1,...,x_n]^Gamma)$ would even give the number of linearly independent invariants of $Gamma$ of degree $1$. Where does the degree $1$ bit come from?










share|cite|improve this question











$endgroup$




Let $Gamma subseteq GL_n(mathbbC)$ be a finite matrix group. Let this finite matrix group act on $f(x_1,...,x_n) in mathbbC[x_1,...,x_n]$ like so: $$Gamma cdot f(x_1,...,x_n) = f(Gamma textbfx)$$ where $textbfx$ is to be thought of as the column vector of the variables $x_1,...,x_n$.



Define the invariant subspace $mathbbC[x_1,...,x_n]^Gamma = f in mathbbC[x_1,...,x_n] : A cdot f = f hspace2mm forall hspace2mm A in Gamma$.



Now, define the Reynold's operator $R_Gamma : mathbbC[x_1,...,x_n] rightarrow mathbbC[x_1,...,x_n]$ by: $$R_Gamma (f)(textbfx) = frac1 sum_A in Gamma f(A textbfx)$$



Now, the number of linearly independent invariants of $Gamma$ of degree $1$ is given by $$a_1 = frac1 sum_A in Gamma trace(A)$$ But I'm not sure why this is so? I know that $R_Gamma$ is projection on to $mathbbC[x_1,...,x_n]$ and $im(R_Gamma) = mathbbC[x_1,...,x_n]^Gamma$, and so this would imply that $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^Gamma)$, but where do I go from here? What is the trace of this Reynold's Operator?



I'm not even sure if I'm going in the right direction here, because I'm not sure why this $dim(mathbbC[x_1,...,x_n]^Gamma)$ would even give the number of linearly independent invariants of $Gamma$ of degree $1$. Where does the degree $1$ bit come from?







abstract-algebra representation-theory invariant-theory invariance






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 30 at 0:16







the man

















asked Mar 29 at 21:20









the manthe man

831716




831716







  • 2




    $begingroup$
    The left action of a $gamma$ on $f$ is $gamma cdot f(textbfx )= f(gamma^-1 textbfx)$. Otherwise it is a right-action.
    $endgroup$
    – AlexL
    Mar 29 at 23:12






  • 1




    $begingroup$
    If $R_Gamma$ is a projection, then its restriction $r_Gamma : mathbbC_leqslant 1[textbfx] to mathbbC_leqslant 1[textbfx]$ (the polynomials of degree $leqslant 1$) is the projection on $mathbbC_leqslant 1[textbfx]^Gamma$ and $a_1=dim(mathbbC_leqslant 1[textbfx]^Gamma)=rk(r_Gamma)=trace(r_Gamma)$. To calcultate $trace(r_Gamma)$, use the basis $(x_1,cdots,x_n)$ of $mathbbC_leqslant 1[textbfx]$. It should lead you to the result
    $endgroup$
    – AlexL
    Mar 29 at 23:12











  • $begingroup$
    How do you mean use the basis?
    $endgroup$
    – the man
    Mar 29 at 23:49










  • $begingroup$
    Also, in all the literature I’ve read, when discussing invariance, they let a matrix $M$ act on a polynomial $f(x_1,...,x_n)$ as $M cdot f(x_1,...,x_n) = f(M textbfx)$?
    $endgroup$
    – the man
    Mar 29 at 23:57










  • $begingroup$
    @theman Try computing $MNcdot f$ and $Mcdot (Ncdot f)$ with that definition. You'll notice that $(MNcdot f)x=f(MNx)$, whereas $(Mcdot (Ncdot f))x=(Ncdot f)(Mx)=f(NMx)$. These are not equal.
    $endgroup$
    – jgon
    Mar 30 at 0:04












  • 2




    $begingroup$
    The left action of a $gamma$ on $f$ is $gamma cdot f(textbfx )= f(gamma^-1 textbfx)$. Otherwise it is a right-action.
    $endgroup$
    – AlexL
    Mar 29 at 23:12






  • 1




    $begingroup$
    If $R_Gamma$ is a projection, then its restriction $r_Gamma : mathbbC_leqslant 1[textbfx] to mathbbC_leqslant 1[textbfx]$ (the polynomials of degree $leqslant 1$) is the projection on $mathbbC_leqslant 1[textbfx]^Gamma$ and $a_1=dim(mathbbC_leqslant 1[textbfx]^Gamma)=rk(r_Gamma)=trace(r_Gamma)$. To calcultate $trace(r_Gamma)$, use the basis $(x_1,cdots,x_n)$ of $mathbbC_leqslant 1[textbfx]$. It should lead you to the result
    $endgroup$
    – AlexL
    Mar 29 at 23:12











  • $begingroup$
    How do you mean use the basis?
    $endgroup$
    – the man
    Mar 29 at 23:49










  • $begingroup$
    Also, in all the literature I’ve read, when discussing invariance, they let a matrix $M$ act on a polynomial $f(x_1,...,x_n)$ as $M cdot f(x_1,...,x_n) = f(M textbfx)$?
    $endgroup$
    – the man
    Mar 29 at 23:57










  • $begingroup$
    @theman Try computing $MNcdot f$ and $Mcdot (Ncdot f)$ with that definition. You'll notice that $(MNcdot f)x=f(MNx)$, whereas $(Mcdot (Ncdot f))x=(Ncdot f)(Mx)=f(NMx)$. These are not equal.
    $endgroup$
    – jgon
    Mar 30 at 0:04







2




2




$begingroup$
The left action of a $gamma$ on $f$ is $gamma cdot f(textbfx )= f(gamma^-1 textbfx)$. Otherwise it is a right-action.
$endgroup$
– AlexL
Mar 29 at 23:12




$begingroup$
The left action of a $gamma$ on $f$ is $gamma cdot f(textbfx )= f(gamma^-1 textbfx)$. Otherwise it is a right-action.
$endgroup$
– AlexL
Mar 29 at 23:12




1




1




$begingroup$
If $R_Gamma$ is a projection, then its restriction $r_Gamma : mathbbC_leqslant 1[textbfx] to mathbbC_leqslant 1[textbfx]$ (the polynomials of degree $leqslant 1$) is the projection on $mathbbC_leqslant 1[textbfx]^Gamma$ and $a_1=dim(mathbbC_leqslant 1[textbfx]^Gamma)=rk(r_Gamma)=trace(r_Gamma)$. To calcultate $trace(r_Gamma)$, use the basis $(x_1,cdots,x_n)$ of $mathbbC_leqslant 1[textbfx]$. It should lead you to the result
$endgroup$
– AlexL
Mar 29 at 23:12





$begingroup$
If $R_Gamma$ is a projection, then its restriction $r_Gamma : mathbbC_leqslant 1[textbfx] to mathbbC_leqslant 1[textbfx]$ (the polynomials of degree $leqslant 1$) is the projection on $mathbbC_leqslant 1[textbfx]^Gamma$ and $a_1=dim(mathbbC_leqslant 1[textbfx]^Gamma)=rk(r_Gamma)=trace(r_Gamma)$. To calcultate $trace(r_Gamma)$, use the basis $(x_1,cdots,x_n)$ of $mathbbC_leqslant 1[textbfx]$. It should lead you to the result
$endgroup$
– AlexL
Mar 29 at 23:12













$begingroup$
How do you mean use the basis?
$endgroup$
– the man
Mar 29 at 23:49




$begingroup$
How do you mean use the basis?
$endgroup$
– the man
Mar 29 at 23:49












$begingroup$
Also, in all the literature I’ve read, when discussing invariance, they let a matrix $M$ act on a polynomial $f(x_1,...,x_n)$ as $M cdot f(x_1,...,x_n) = f(M textbfx)$?
$endgroup$
– the man
Mar 29 at 23:57




$begingroup$
Also, in all the literature I’ve read, when discussing invariance, they let a matrix $M$ act on a polynomial $f(x_1,...,x_n)$ as $M cdot f(x_1,...,x_n) = f(M textbfx)$?
$endgroup$
– the man
Mar 29 at 23:57












$begingroup$
@theman Try computing $MNcdot f$ and $Mcdot (Ncdot f)$ with that definition. You'll notice that $(MNcdot f)x=f(MNx)$, whereas $(Mcdot (Ncdot f))x=(Ncdot f)(Mx)=f(NMx)$. These are not equal.
$endgroup$
– jgon
Mar 30 at 0:04




$begingroup$
@theman Try computing $MNcdot f$ and $Mcdot (Ncdot f)$ with that definition. You'll notice that $(MNcdot f)x=f(MNx)$, whereas $(Mcdot (Ncdot f))x=(Ncdot f)(Mx)=f(NMx)$. These are not equal.
$endgroup$
– jgon
Mar 30 at 0:04










1 Answer
1






active

oldest

votes


















1












$begingroup$

In those cases I need elementary discussions



For any representation of finite group $rho : G to GL(V)$ to inversible linear maps of a $BbbC$-vector space, then $P=frac1sum_g in Grho(g)$ is a projection of $V$ on the $G$-fixed subspace $V^G$ (proof : if $v in V$ then $Pv in V^G$ and if $v in V^G$ then $Pv=v$)



in some basis $B$ you'll have $P = B pmatrixI_m & 0 \ 0 & 0 B^-1$ where $m = dim V^G$ so $trace(P) = trace( pmatrixI_m & 0 \ 0 & 0) = dim V^G$.



You need to make clear you are considering $V =BbbC^n$ and the corresponding $trace$, no polynomial ring.



From there you can construct other representations on $BbbC[x_1,ldots,x_n]_d$ the set of homogeneous polynomials of degree $d$, the obtained representation $pi(g)(f(x))= f(rho(g)x)$ is called $pi = Sym^drho$, and what you defined is the natural infinite dimensional rep. $bigoplus_d Sym^drho$ of $G=Gamma$ on $BbbC[x_1,ldots,x_n] = bigoplus_d BbbC[x_1,ldots,x_n]_d$.



Then the point is that $V = V^G oplus W$ where $W = ker(P)$ and $W$ is sent to itself by the $Ain Gamma$ thus is a subrepresentation. This decomposition translates to the polynomials obtaining that with the linear polynomials $(y_1,ldots,y_m,z_1,ldots,z_n-m) = B(x_1,ldots,x_n)$ : $BbbC[x_1,ldots,x_n]= BbbC[y_1,ldots,y_m,z_1,ldots,z_n-m]$ and $A.f(y_1,ldots,y_m,z_1,ldots,z_n-m) = f((y_1,ldots,y_m,0,ldots)+BA B^-1 (0,ldots,z_1,ldots,z_n-m))$.



If $G$ is a finite group then $BbbC[x_1,ldots,x_n]/BbbC[x_1,ldots,x_n]^G$ is a finite Galois extension with Galois group $H=G/ker(rho)$ so $BbbC[x_1,ldots,x_n]^G=BbbC[y_1,ldots,y_m,f_1,ldots,f_n-m]$ for some algebraically independent polynomials $f$ (of degree $> 1$). Not sure how to find $BbbC[x_1,ldots,x_n]^G$ and its transcendental degree when $H$ is infinite.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
    $endgroup$
    – the man
    Mar 30 at 10:42







  • 1




    $begingroup$
    No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
    $endgroup$
    – reuns
    Mar 30 at 12:47











  • $begingroup$
    Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
    $endgroup$
    – the man
    Mar 30 at 13:00







  • 1




    $begingroup$
    @theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
    $endgroup$
    – reuns
    Mar 30 at 13:08











  • $begingroup$
    @ Oh yes, I see. Thank you very much!
    $endgroup$
    – the man
    Mar 30 at 13:10











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167634%2fdimension-of-the-invariant-subspace%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

In those cases I need elementary discussions



For any representation of finite group $rho : G to GL(V)$ to inversible linear maps of a $BbbC$-vector space, then $P=frac1sum_g in Grho(g)$ is a projection of $V$ on the $G$-fixed subspace $V^G$ (proof : if $v in V$ then $Pv in V^G$ and if $v in V^G$ then $Pv=v$)



in some basis $B$ you'll have $P = B pmatrixI_m & 0 \ 0 & 0 B^-1$ where $m = dim V^G$ so $trace(P) = trace( pmatrixI_m & 0 \ 0 & 0) = dim V^G$.



You need to make clear you are considering $V =BbbC^n$ and the corresponding $trace$, no polynomial ring.



From there you can construct other representations on $BbbC[x_1,ldots,x_n]_d$ the set of homogeneous polynomials of degree $d$, the obtained representation $pi(g)(f(x))= f(rho(g)x)$ is called $pi = Sym^drho$, and what you defined is the natural infinite dimensional rep. $bigoplus_d Sym^drho$ of $G=Gamma$ on $BbbC[x_1,ldots,x_n] = bigoplus_d BbbC[x_1,ldots,x_n]_d$.



Then the point is that $V = V^G oplus W$ where $W = ker(P)$ and $W$ is sent to itself by the $Ain Gamma$ thus is a subrepresentation. This decomposition translates to the polynomials obtaining that with the linear polynomials $(y_1,ldots,y_m,z_1,ldots,z_n-m) = B(x_1,ldots,x_n)$ : $BbbC[x_1,ldots,x_n]= BbbC[y_1,ldots,y_m,z_1,ldots,z_n-m]$ and $A.f(y_1,ldots,y_m,z_1,ldots,z_n-m) = f((y_1,ldots,y_m,0,ldots)+BA B^-1 (0,ldots,z_1,ldots,z_n-m))$.



If $G$ is a finite group then $BbbC[x_1,ldots,x_n]/BbbC[x_1,ldots,x_n]^G$ is a finite Galois extension with Galois group $H=G/ker(rho)$ so $BbbC[x_1,ldots,x_n]^G=BbbC[y_1,ldots,y_m,f_1,ldots,f_n-m]$ for some algebraically independent polynomials $f$ (of degree $> 1$). Not sure how to find $BbbC[x_1,ldots,x_n]^G$ and its transcendental degree when $H$ is infinite.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
    $endgroup$
    – the man
    Mar 30 at 10:42







  • 1




    $begingroup$
    No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
    $endgroup$
    – reuns
    Mar 30 at 12:47











  • $begingroup$
    Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
    $endgroup$
    – the man
    Mar 30 at 13:00







  • 1




    $begingroup$
    @theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
    $endgroup$
    – reuns
    Mar 30 at 13:08











  • $begingroup$
    @ Oh yes, I see. Thank you very much!
    $endgroup$
    – the man
    Mar 30 at 13:10















1












$begingroup$

In those cases I need elementary discussions



For any representation of finite group $rho : G to GL(V)$ to inversible linear maps of a $BbbC$-vector space, then $P=frac1sum_g in Grho(g)$ is a projection of $V$ on the $G$-fixed subspace $V^G$ (proof : if $v in V$ then $Pv in V^G$ and if $v in V^G$ then $Pv=v$)



in some basis $B$ you'll have $P = B pmatrixI_m & 0 \ 0 & 0 B^-1$ where $m = dim V^G$ so $trace(P) = trace( pmatrixI_m & 0 \ 0 & 0) = dim V^G$.



You need to make clear you are considering $V =BbbC^n$ and the corresponding $trace$, no polynomial ring.



From there you can construct other representations on $BbbC[x_1,ldots,x_n]_d$ the set of homogeneous polynomials of degree $d$, the obtained representation $pi(g)(f(x))= f(rho(g)x)$ is called $pi = Sym^drho$, and what you defined is the natural infinite dimensional rep. $bigoplus_d Sym^drho$ of $G=Gamma$ on $BbbC[x_1,ldots,x_n] = bigoplus_d BbbC[x_1,ldots,x_n]_d$.



Then the point is that $V = V^G oplus W$ where $W = ker(P)$ and $W$ is sent to itself by the $Ain Gamma$ thus is a subrepresentation. This decomposition translates to the polynomials obtaining that with the linear polynomials $(y_1,ldots,y_m,z_1,ldots,z_n-m) = B(x_1,ldots,x_n)$ : $BbbC[x_1,ldots,x_n]= BbbC[y_1,ldots,y_m,z_1,ldots,z_n-m]$ and $A.f(y_1,ldots,y_m,z_1,ldots,z_n-m) = f((y_1,ldots,y_m,0,ldots)+BA B^-1 (0,ldots,z_1,ldots,z_n-m))$.



If $G$ is a finite group then $BbbC[x_1,ldots,x_n]/BbbC[x_1,ldots,x_n]^G$ is a finite Galois extension with Galois group $H=G/ker(rho)$ so $BbbC[x_1,ldots,x_n]^G=BbbC[y_1,ldots,y_m,f_1,ldots,f_n-m]$ for some algebraically independent polynomials $f$ (of degree $> 1$). Not sure how to find $BbbC[x_1,ldots,x_n]^G$ and its transcendental degree when $H$ is infinite.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
    $endgroup$
    – the man
    Mar 30 at 10:42







  • 1




    $begingroup$
    No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
    $endgroup$
    – reuns
    Mar 30 at 12:47











  • $begingroup$
    Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
    $endgroup$
    – the man
    Mar 30 at 13:00







  • 1




    $begingroup$
    @theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
    $endgroup$
    – reuns
    Mar 30 at 13:08











  • $begingroup$
    @ Oh yes, I see. Thank you very much!
    $endgroup$
    – the man
    Mar 30 at 13:10













1












1








1





$begingroup$

In those cases I need elementary discussions



For any representation of finite group $rho : G to GL(V)$ to inversible linear maps of a $BbbC$-vector space, then $P=frac1sum_g in Grho(g)$ is a projection of $V$ on the $G$-fixed subspace $V^G$ (proof : if $v in V$ then $Pv in V^G$ and if $v in V^G$ then $Pv=v$)



in some basis $B$ you'll have $P = B pmatrixI_m & 0 \ 0 & 0 B^-1$ where $m = dim V^G$ so $trace(P) = trace( pmatrixI_m & 0 \ 0 & 0) = dim V^G$.



You need to make clear you are considering $V =BbbC^n$ and the corresponding $trace$, no polynomial ring.



From there you can construct other representations on $BbbC[x_1,ldots,x_n]_d$ the set of homogeneous polynomials of degree $d$, the obtained representation $pi(g)(f(x))= f(rho(g)x)$ is called $pi = Sym^drho$, and what you defined is the natural infinite dimensional rep. $bigoplus_d Sym^drho$ of $G=Gamma$ on $BbbC[x_1,ldots,x_n] = bigoplus_d BbbC[x_1,ldots,x_n]_d$.



Then the point is that $V = V^G oplus W$ where $W = ker(P)$ and $W$ is sent to itself by the $Ain Gamma$ thus is a subrepresentation. This decomposition translates to the polynomials obtaining that with the linear polynomials $(y_1,ldots,y_m,z_1,ldots,z_n-m) = B(x_1,ldots,x_n)$ : $BbbC[x_1,ldots,x_n]= BbbC[y_1,ldots,y_m,z_1,ldots,z_n-m]$ and $A.f(y_1,ldots,y_m,z_1,ldots,z_n-m) = f((y_1,ldots,y_m,0,ldots)+BA B^-1 (0,ldots,z_1,ldots,z_n-m))$.



If $G$ is a finite group then $BbbC[x_1,ldots,x_n]/BbbC[x_1,ldots,x_n]^G$ is a finite Galois extension with Galois group $H=G/ker(rho)$ so $BbbC[x_1,ldots,x_n]^G=BbbC[y_1,ldots,y_m,f_1,ldots,f_n-m]$ for some algebraically independent polynomials $f$ (of degree $> 1$). Not sure how to find $BbbC[x_1,ldots,x_n]^G$ and its transcendental degree when $H$ is infinite.






share|cite|improve this answer











$endgroup$



In those cases I need elementary discussions



For any representation of finite group $rho : G to GL(V)$ to inversible linear maps of a $BbbC$-vector space, then $P=frac1sum_g in Grho(g)$ is a projection of $V$ on the $G$-fixed subspace $V^G$ (proof : if $v in V$ then $Pv in V^G$ and if $v in V^G$ then $Pv=v$)



in some basis $B$ you'll have $P = B pmatrixI_m & 0 \ 0 & 0 B^-1$ where $m = dim V^G$ so $trace(P) = trace( pmatrixI_m & 0 \ 0 & 0) = dim V^G$.



You need to make clear you are considering $V =BbbC^n$ and the corresponding $trace$, no polynomial ring.



From there you can construct other representations on $BbbC[x_1,ldots,x_n]_d$ the set of homogeneous polynomials of degree $d$, the obtained representation $pi(g)(f(x))= f(rho(g)x)$ is called $pi = Sym^drho$, and what you defined is the natural infinite dimensional rep. $bigoplus_d Sym^drho$ of $G=Gamma$ on $BbbC[x_1,ldots,x_n] = bigoplus_d BbbC[x_1,ldots,x_n]_d$.



Then the point is that $V = V^G oplus W$ where $W = ker(P)$ and $W$ is sent to itself by the $Ain Gamma$ thus is a subrepresentation. This decomposition translates to the polynomials obtaining that with the linear polynomials $(y_1,ldots,y_m,z_1,ldots,z_n-m) = B(x_1,ldots,x_n)$ : $BbbC[x_1,ldots,x_n]= BbbC[y_1,ldots,y_m,z_1,ldots,z_n-m]$ and $A.f(y_1,ldots,y_m,z_1,ldots,z_n-m) = f((y_1,ldots,y_m,0,ldots)+BA B^-1 (0,ldots,z_1,ldots,z_n-m))$.



If $G$ is a finite group then $BbbC[x_1,ldots,x_n]/BbbC[x_1,ldots,x_n]^G$ is a finite Galois extension with Galois group $H=G/ker(rho)$ so $BbbC[x_1,ldots,x_n]^G=BbbC[y_1,ldots,y_m,f_1,ldots,f_n-m]$ for some algebraically independent polynomials $f$ (of degree $> 1$). Not sure how to find $BbbC[x_1,ldots,x_n]^G$ and its transcendental degree when $H$ is infinite.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 30 at 13:13

























answered Mar 30 at 3:41









reunsreuns

20.6k21352




20.6k21352











  • $begingroup$
    So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
    $endgroup$
    – the man
    Mar 30 at 10:42







  • 1




    $begingroup$
    No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
    $endgroup$
    – reuns
    Mar 30 at 12:47











  • $begingroup$
    Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
    $endgroup$
    – the man
    Mar 30 at 13:00







  • 1




    $begingroup$
    @theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
    $endgroup$
    – reuns
    Mar 30 at 13:08











  • $begingroup$
    @ Oh yes, I see. Thank you very much!
    $endgroup$
    – the man
    Mar 30 at 13:10
















  • $begingroup$
    So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
    $endgroup$
    – the man
    Mar 30 at 10:42







  • 1




    $begingroup$
    No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
    $endgroup$
    – reuns
    Mar 30 at 12:47











  • $begingroup$
    Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
    $endgroup$
    – the man
    Mar 30 at 13:00







  • 1




    $begingroup$
    @theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
    $endgroup$
    – reuns
    Mar 30 at 13:08











  • $begingroup$
    @ Oh yes, I see. Thank you very much!
    $endgroup$
    – the man
    Mar 30 at 13:10















$begingroup$
So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
$endgroup$
– the man
Mar 30 at 10:42





$begingroup$
So, where I've written $trace(R_Gamma) = dim(mathbbC[x_1,...,x_n]^G)$, does this not maky any sense?
$endgroup$
– the man
Mar 30 at 10:42





1




1




$begingroup$
No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
$endgroup$
– reuns
Mar 30 at 12:47





$begingroup$
No, except if you meant the Krull dimension of the ring $mathbbC[x_1,...,x_n]^G$ (the size of its transcendental basis over $BbbC$) in which case yes, which is what I did with $mathbbC[x_1,...,x_n]^G = BbbC[y_1,ldots,y_m]$
$endgroup$
– reuns
Mar 30 at 12:47













$begingroup$
Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
$endgroup$
– the man
Mar 30 at 13:00





$begingroup$
Why does it not make any sense? Can we not think of it as a vector space? I mean, the quantity I'm after is $a_1 = dim_mathbbC(mathbbC[x_1,...,x_n]_1^Gamma)$ right?
$endgroup$
– the man
Mar 30 at 13:00





1




1




$begingroup$
@theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
$endgroup$
– reuns
Mar 30 at 13:08





$begingroup$
@theman $mathbbC[x_1,...,x_n]^G$ is a ring of polynomials, it is an infinite dimensional vector space. By the way if $G$ is a finite group then $mathbbC[x_1,...,x_n]^G$ always contains more than $BbbC[y_1,ldots,y_m]$, $mathbbC[x_1,...,x_n]/mathbbC[x_1,...,x_n]^G$ is a Galois extension of degree $|G/ker(rho)|$ thus the transcendental degree of $mathbbC[x_1,...,x_n]^G$ is $n$, not $m$ (concretely for some $f_1,ldots,f_G/ker(rho)$ then $mathbbC[x_1,...,x_n]=sum_j=1^G/ker(rho) mathbbC[x_1,...,x_n]^G f_j(x)$)
$endgroup$
– reuns
Mar 30 at 13:08













$begingroup$
@ Oh yes, I see. Thank you very much!
$endgroup$
– the man
Mar 30 at 13:10




$begingroup$
@ Oh yes, I see. Thank you very much!
$endgroup$
– the man
Mar 30 at 13:10

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167634%2fdimension-of-the-invariant-subspace%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε