Skip to main content

安培 睇埋 導覽選單充實

國際單位電學單位


電流法國物理安德烈-瑪麗·安培N庫侖












安培




出自維基百科,自由嘅百科全書






Jump to navigation
Jump to search


安培(簡稱安,符號A)係比電流嘅單位,佢係以法國物理學家安德烈-瑪麗·安培(André-Marie Ampère)命名嘅。


1安培係喺兩條無限長平行直導線,喺真空相距1米,通咗固定而相同電流,導致每米導線所受嘅力係2×10-7N嗰陣,每導線上電流嘅大細。


計算公式:1A = 1C/s(喺導體截面上每秒有1庫侖電子通過,就係一安培)


比安培細嘅電流可以用毫安、微安表示。


  • 1安(A) = 1000毫安(mA)

  • 1毫安(mA)= 1000微安(μA)


睇埋


  • 安培計










由「https://zh-yue.wikipedia.org/w/index.php?title=安培&oldid=937331」收










導覽選單


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.192","walltime":"0.235","ppvisitednodes":"value":145,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":14748,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":4,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 200.378 1 -total"," 86.90% 174.123 1 Template:Lang"," 10.52% 21.089 1 Template:國際單位制"," 8.53% 17.090 1 Template:Navbox"," 2.36% 4.734 1 Template:Stub"," 1.18% 2.366 43 Template:·"],"scribunto":"limitreport-timeusage":"value":"0.126","limit":"10.000","limitreport-memusage":"value":8546190,"limit":52428800,"cachereport":"origin":"mw1299","timestamp":"20190313034255","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"u5b89u57f9","url":"https://zh-yue.wikipedia.org/wiki/%E5%AE%89%E5%9F%B9","sameAs":"http://www.wikidata.org/entity/Q25272","mainEntity":"http://www.wikidata.org/entity/Q25272","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2012-07-07T15:15:34Z","dateModified":"2015-06-11T13:38:58Z"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":132,"wgHostname":"mw1262"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε