Skip to main content

232 Ynhâld Foarfallen | Berne | Ferstoarn | Boarnen, noaten en referinsjes Navigaasjemenu232

Multi tool use
Multi tool use

2323e iuw













232




Ut Wikipedy






Jump to navigation
Jump to search



























Iuwen:

3e fK

2e fK

1e fK

1e

2e

3e iuw

4e

5e

6e

7e

8e
Jierren:

227

228

229

230

231

232

233

234

235

236

237
























Calendar-nl.pngKalinders

Gregoriaanske kalinder
232
CCXXXII

Ab urbe condita
985

Etiopyske kalinder
224 – 225

Hebriuwske kalinder
3992 – 3993

Hindoekalinders

- Vikram Samvat
287 – 288
- Shaka Samvat
154 – 155
- Kali Yuga
3333 – 3334

Juliaanske kalinder
 Crystal 128 date.png
232
CCXXXII

Sineeske kalinder
2928 – 2929

戊亥 – 己子


232 is in skrikkeljier dat begjint mei in snein. (Juliaanske kalinder foar 232.)




Ynhâld





  • 1 Foarfallen


  • 2 Berne


  • 3 Ferstoarn


  • 4 Boarnen, noaten en referinsjes




Foarfallen |



Berne |



  • Markus Aurelius Probus, Romeinsk keizer.


Ferstoarn |




























Jierren:

227

228

229

230

231

232

233

234

235

236

237

Iuwen:

3e fK

2e fK

1e fK

1e

2e

3e iuw

4e

5e

6e

7e

8e


Boarnen, noaten en referinsjes




Boarnen, noaten en/as referinsjes:


Commons





Untfongen fan "https://fy.wikipedia.org/w/index.php?title=232&oldid=844891"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.088","walltime":"0.110","ppvisitednodes":"value":1239,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":16431,"limit":2097152,"templateargumentsize":"value":1407,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 66.685 1 -total"," 37.78% 25.193 1 Berjocht:Kalinders"," 32.96% 21.980 1 Berjocht:JiersideBoppe"," 18.89% 12.598 2 Berjocht:IuwPart"," 17.60% 11.738 2 Berjocht:JierPart"," 12.89% 8.593 1 Berjocht:JiersideUnder"," 9.08% 6.056 1 Berjocht:Boarnen"," 7.07% 4.714 2 Berjocht:Romeinsk"," 6.75% 4.499 1 Berjocht:Kalinderjier"," 4.91% 3.274 1 Berjocht:Commonscat"],"cachereport":"origin":"mw1274","timestamp":"20190309013309","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":133,"wgHostname":"mw1263"););3AuXr,XsOwVPZ,bYDcD,Z0u7htCDc5zsCooTv dmU6hFSllfhX2NUPWXc oXCy0H SV,fjtew2OQm6n8bCvCf6u3DOWRkAzK
x ied,scTEPOSQjEXJ0VjapLx0h9nsL,Y5S,4Q1Tp70icNUrogTF Vl VV215,vwQ 5n lZHG ZF4 o0bh,W6uDXFncs4r9bC5 NCuC1

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?