Skip to main content

235 Ynhâld Foarfallen | Berne | Ferstoarn | Boarnen, noaten en referinsjes Navigaasjemenu235

Multi tool use
Multi tool use

2353e iuw













235




Ut Wikipedy






Jump to navigation
Jump to search



























Iuwen:

3e fK

2e fK

1e fK

1e

2e

3e iuw

4e

5e

6e

7e

8e
Jierren:

230

231

232

233

234

235

236

237

238

239

240
























Calendar-nl.pngKalinders

Gregoriaanske kalinder
235
CCXXXV

Ab urbe condita
988

Etiopyske kalinder
227 – 228

Hebriuwske kalinder
3995 – 3996

Hindoekalinders

- Vikram Samvat
290 – 291
- Shaka Samvat
157 – 158
- Kali Yuga
3336 – 3337

Juliaanske kalinder
 Crystal 128 date.png
235
CCXXXV

Sineeske kalinder
2931 – 2932

辛寅 – 壬卯


235 is in gewoan jier dat begjint mei in tongersdei. (Juliaanske kalinder foar 235.)





Maks Traks




Ynhâld





  • 1 Foarfallen


  • 2 Berne


  • 3 Ferstoarn


  • 4 Boarnen, noaten en referinsjes




Foarfallen |



  • Maksiminus Traks wurdt keizer fan it Romeinske Ryk.


Berne |



Ferstoarn |



  • 18 maart - Marcus Aurelius Severus Aleksander (26), keizer fan it Romeinske Ryk


  • Julia Mamaea, keizerinne en mem fan Alexander Severus



























Jierren:

230

231

232

233

234

235

236

237

238

239

240

Iuwen:

3e fK

2e fK

1e fK

1e

2e

3e iuw

4e

5e

6e

7e

8e


Boarnen, noaten en referinsjes




Boarnen, noaten en/as referinsjes:


Commons





Untfongen fan "https://fy.wikipedia.org/w/index.php?title=235&oldid=843586"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.088","walltime":"0.110","ppvisitednodes":"value":1239,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":16484,"limit":2097152,"templateargumentsize":"value":1407,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 71.190 1 -total"," 39.88% 28.390 1 Berjocht:Kalinders"," 30.16% 21.474 1 Berjocht:JiersideBoppe"," 18.86% 13.428 2 Berjocht:IuwPart"," 15.53% 11.055 2 Berjocht:JierPart"," 12.97% 9.231 1 Berjocht:JiersideUnder"," 8.83% 6.288 2 Berjocht:Romeinsk"," 8.17% 5.813 1 Berjocht:Kalinderjier"," 8.16% 5.806 1 Berjocht:Boarnen"," 3.85% 2.738 1 Berjocht:Commonscat"],"cachereport":"origin":"mw1266","timestamp":"20190402050026","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":100,"wgHostname":"mw1245"););G U YwHBLxiG7cmSvNqgtahd,iRu4zQyHs15 hIDlDL0Pk tjl0tK8pTFQOkK
7fdj3ziTVsnOhxslL,C2916bC l6dCMJ0tQsMvB0SS,IU5fYexq

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?