Skip to main content

Mechiel Versluis Referanser | Eksterne lenker | Navigasjonsmeny«Rowing at the 2012 London Summer Games: Men's Coxless Fours»Mechiel VersluisMechiel VersluisMechiel Versluisutvide den

Fødsler i 1987Nederlandske roereDeltakere for Nederland under Sommer-OL 2012Roere under Sommer-OL 2012Deltakere for Nederland under Sommer-OL 2016Roere under Sommer-OL 2016Medaljevinnere under Sommer-OL 2016


29. juli1987nederlandskroerSommer-OL 2012Londonlandet sitt












Mechiel Versluis




Fra Wikipedia, den frie encyklopedi






Hopp til navigering
Hopp til søk










Mechiel Versluis
Født
29. juli 1987 (31 år)
Nederland
Beskjeftigelse Roer
Nasjonalitet Kongeriket Nederlandene
SportRoing

Mechiel Versluis (født 29. juli 1987) er en nederlandsk roer som spesialiserer seg i firer uten styrmann, lettvekt. Under Sommer-OL 2012 i London representerte han landet sitt, der han ble nummer 5.[1]



Referanser |



  1. ^ «Rowing at the 2012 London Summer Games: Men's Coxless Fours». sports-reference.com. Besøkt 8. september 2014. 



Eksterne lenker |


  • (en) Mechiel Versluis – Olympic.orgRedigere på wikidata

  • (en) Mechiel Versluis – Sports-Reference (OL-resultater)Redigere på wikidata

  • (en) Mechiel Versluis – FISARedigere på wikidata


roingstubbDenne roingrelaterte artikkelen er foreløpig kort eller mangelfull, og du kan hjelpe Wikipedia ved å utvide den.
Det finnes mer utfyllende artikkel/artikler på  .









Hentet fra «https://no.wikipedia.org/w/index.php?title=Mechiel_Versluis&oldid=18185553»










Navigasjonsmeny





























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.604","walltime":"0.787","ppvisitednodes":"value":9853,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":11987,"limit":2097152,"templateargumentsize":"value":3471,"limit":2097152,"expansiondepth":"value":12,"limit":40,"expensivefunctioncount":"value":4,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":1020,"limit":5000000,"entityaccesscount":"value":4,"limit":400,"timingprofile":["100.00% 757.973 1 -total"," 59.07% 447.722 1 Mal:Infoboks_sportsbiografi"," 58.47% 443.164 1 Mal:Infoboks_biografi"," 20.54% 155.670 1 Mal:Sportslenker"," 10.39% 78.770 154 Mal:Infoboks_rad"," 9.34% 70.812 1 Mal:Cite_web"," 7.85% 59.465 1 Mal:Kilde_www"," 6.60% 50.056 2 Mal:Infoboks_bilde"," 5.47% 41.478 2 Mal:Br_separated_entries"," 5.15% 39.061 2 Mal:Bilde_fra_Wikidata"],"scribunto":"limitreport-timeusage":"value":"0.219","limit":"10.000","limitreport-memusage":"value":4037197,"limit":52428800,"cachereport":"origin":"mw1240","timestamp":"20190413162716","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Mechiel Versluis","url":"https://no.wikipedia.org/wiki/Mechiel_Versluis","sameAs":"http://www.wikidata.org/entity/Q2569527","mainEntity":"http://www.wikidata.org/entity/Q2569527","author":"@type":"Organization","name":"Bidragsytarar til Wikimedia-prosjekta","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2014-09-09T15:42:45Z","dateModified":"2018-01-16T18:54:12Z"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":115,"wgHostname":"mw1267"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε